\qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Sixth semester B.Tech examinations (S), September 2020

Course Code: CE302
 Course Name: DESIGN OF HYDRAULIC STRUCTURES

Use of Khosla's charts are permitted in the exam hall Assume suitable data wherever necessary
 PART A
 Answer any two full questions, each carries 15 marks.

Marks
1 a) Explain the Khosla's theory of independent variables.
b) Explain the components of unlined canal sections with sketches.
c) Explain the causes of failure of weirs on permeable soils.

2 a) A hydraulic structure built on fine sand has the following details:
Total length of the floor $=29 \mathrm{~m}$, a weir at 6 m from u/s end, effective head of water 4 m , sheet pile at u / s end 5 m deep, sheet pile at d / s end 6 m deep, intermediate piles of 3 m depth at 12 m from u / s end. Determine: a) Average hydraulic gradient, b) Uplift pressures at points $A=6 \mathrm{~m}$, and $\mathrm{B}=20 \mathrm{~m}$ from upstream end and corresponding thicknesses of floor using Bligh's theory. Specific gravity of floor material is 2.24 .
b) Compare Kennedy's theory and Lacey's theory for design of canals through alluvial soils.
c) Explain the different types of canal falls

3 a) Using Lacey's theory, design a regime channel for a discharge of 43 cumecs, side slopes $1 / 2$: 1 and silt factor 1.1 .
b) Explain the different types of aqueducts.
c) What are the general considerations for canal alignment?

PART B
Answer any one full question, each carries 50 marks.
4 a) Design a suitable cross drainage work, for the following data at the crossing of a canal and a drainage.

Canal:

Full supply discharge $=42$ cumecs
Full supply level $=192.7 \mathrm{~m}$
Canal bed level $=191.0 \mathrm{~m}$
Canal bed width $=26 \mathrm{~m}$
Trapezoidal canal section with $1.5 \mathrm{H}: 1 \mathrm{~V}$ slopes
Canal water depth $=1.7 \mathrm{~m}$.

Drainage:

High flood discharge $=340$ cumecs .
High flood level $=189.0 \mathrm{~m}$
High flood depth $=2.7 \mathrm{~m}$.
General ground level $=191.5 \mathrm{~m}$.
b) Prepare the following drawings (not to scale)
i) Half plan at top and half at foundation level.
ii) Section through the centre line of the drain.
a) Design a Sarda Type fall with drop of 1.4 m for a canal carrying a discharge of

35 cumecs with the following data:
Bed level upstream $=104 \mathrm{~m}$
Bed level downstream $=102.6 \mathrm{~m}$
Side slopes of channel $=1: 1$
Full supply level upstream $=105.6 \mathrm{~m}$
Bed width u / s and $\mathrm{d} / \mathrm{s}=27 \mathrm{~m}$
Safe exit gradient $=1 / 5$
b) Prepare the following drawings (not to scale)
i) Half plan at top and half at the foundation level.
ii) Section through the centre line of the canal.

PART C
 Answer any two full questions, each carries 10 marks.

6 a) Explain chute spillway and side channel spillway.
b) List the forces acting in a gravity dam.
c) What is a stilling basin? Explain Type I and Type II stilling basins.

7 a) What are the functions of gallery in a gravity dam?
b) With the help of a neat sketch, derive the expression for thickness of arch ring at
a depth ' h ' m below the water surface in the reservoir.
c) What is meant by elementary profile of a gravity dam?

Check the stability of the gravity dam with the following data:
Reduced level of the dam at the base $=90 \mathrm{~m}$
Height of dam $=250 \mathrm{~m}$
Maximum water surface elevation $=336 \mathrm{~m}$
Top width $=8 \mathrm{~m}$
Upstream face is vertical and downstream face is vertical up to elevation 330 m and has a slope of 0.8 horizontal to 1 vertical below this elevation. Assume no tail water and no drainage galleries. Density of concrete is $24 \mathrm{kN} / \mathrm{m}^{3}$ and coefficient of friction is 0.75 .

