Duration: 3 Hours

Reg No.:__

Name:____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree Examination December 2020 (2019 Scheme)

Course Code: MAT201

Course Name: Partial Differential equations and Complex analysis

Max. Marks: 100

(b)

	PART A						
	Answer all questions. Each question carries 3 marks	Marks					
1	Derive a partial differential equation from the relation $z = (x + y) f(x^2 - y)$						
2	Solve using direct integration $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$	(3)					
3	Solve $2z=xp+yq$.	(3)					
4	Write any three assumptions in deriving one dimensional heat equation.	(3)					
5	Show that an analytic function $f(z) = u+iv$ is constant if its real part is						
	constant.						
6	Show that the function $u = \sin x \cos hy$ is harmonic.						
7	Find the Maclaurin series of $f(z) = sinz$						
8	Evaluate $\oint_C \ln z dz$, where C is the unit circle $ z = 1$.	(3)					
9	Find all singular points and residue of the function cosec z						
10	Determine the location and order of zeros of the function $sin^4(\frac{z}{2})$	(3)					
	PART B Answer any one full question from each module. Each question carries 14 mark	5					

Module 1

11 (a)	Form the Partial differential equation by eliminating the arbitrary constants	(5)
	from $(x - a)^2 + (y - b)^2 = z^2 \cot^2 \alpha$	

(b) Solve
$$2xz - px^2 - 2qxy + pq = 0$$
 (9)

12 (a) Solve
$$\frac{\partial^3 z}{\partial^2 x \, \partial y} = \cos(2x+3y)$$
 (7)
(7)

(b) Solve $x^2 (y-z)p + y^2 (z-x)q = z^2 (x-y)$

Module 2

13 (a) Derive the solution of the one dimensional wave equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ (6) using variable separable method.

An insulated rod of length l has its ends A and B maintained at 0^0 C and

0800MAT201122001

 100° C respectively until steady state conditions prevail. If B is suddenly (8) reduced to 0° C and maintained at 0° C, find the temperature at a distance x from A at time t.

- 14 (a) Derive the one dimensional heat flow equation. (6)
 - (b) A tightly stretched string of length l with fixed ends is initially in equilibrium position .If it is set vibrating by giving each points a velocity (8) $v_0 sin^3(\frac{\pi x}{l})$. Find the displacement y(x,t).

Module 3

15 (a) Find an analytic function whose real part is $u = sinx coshy$									(7)
(b)			. 1					2	(7)

- (b) Find the image of the strip $\frac{1}{2} \le x \le 1$ under the transformation $w = z^2$
- 16 (a) Check whether $w = \log z$ is analytic. (8)
 - (b) Show that under the transformation $w = \frac{1}{z}$, the circle $x^2 + y^2 6x = 0$ is transformed into a straight line in the W plane. (6)

Module 4

- 17 (a) Integrate counter clockwise around the unit circle $\oint_C \frac{\sin 2z}{z^4} dz$ (7) (b) (7)
 - (b) Find the Taylor series of $\frac{1}{1+z}$ about the centre $z_0 = i$ (7)
- 18 (a) Evaluate $\int_0^{1+i} (x y + ix^2) dz$ along the parabola $y = x^2$. (7) (b) Evaluate $\oint_c \frac{\log z}{(z-4)^2} dz$ counter clockwise around the circle |z-3|=2. (7)

Module 5

- 19 (a) Find the Laurent's series expansion of $\frac{z^2 1}{z^2 5z + 6}$ about z = 0 in the region (5) 2 < |z| < 3
 - (b) Evaluate $\int_0^{2\pi} \frac{d\theta}{\sqrt{2} \cos\theta}$. (9)
- 20 (a) Evaluate $\oint_C \frac{z-23}{z^2-4z-5} dz$ where C : |z-2-i| = 3.2 using Residue (5) theorem.

(b) Evaluate
$$\int_0^\infty \frac{(x^2+2)dx}{(x^2+1)(x^2+4)}$$
. (9)
