\qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree Examination December 2020 (2019 Scheme)

Course Code: MAT201

Course Name: Partial Differential equations and Complex analysis

Max. Marks: 100
Duration: 3 Hours

PART A

Answer all questions. Each question carries 3 marks

Marks

1 Derive a partial differential equation from the relation $\mathrm{z}=(\mathrm{x}+\mathrm{y}) \mathrm{f}\left(x^{2}-y^{2}\right)$
2 Solve using direct integration $\frac{\partial^{2} u}{\partial x \partial t}=e^{-t} \cos x$
$3 \quad$ Solve $2 \mathrm{z}=\mathrm{xp}+\mathrm{yq}$.
4 Write any three assumptions in deriving one dimensional heat equation.
5 Show that an analytic function $f(z)=u+i v$ is constant if its real part is constant.

6 Show that the function $\mathrm{u}=\sin \mathrm{x} \cos$ hy is harmonic.
7 Find the Maclaurin series of $\mathrm{f}(\mathrm{z})=\sin \mathrm{z}$
$8 \quad$ Evaluate $\oint_{C} \ln z d z$, where C is the unit circle $|z|=1$.
9 Find all singular points and residue of the function $\operatorname{cosec} \mathrm{z}$
10 Determine the location and order of zeros of the function $\sin ^{4}\left(\frac{z}{2}\right)$

PART B

Answer any one full question from each module. Each question carries 14 marks

Module 1

11 (a) Form the Partial differential equation by eliminating the arbitrary constants
from $(x-a)^{2}+(y-b)^{2}=z^{2} \cot ^{2} \alpha$
(b) Solve $2 \mathrm{xz}-\mathrm{p} x^{2}-2 \mathrm{qxy}+\mathrm{pq}=0$

12 (a) Solve $\frac{\partial^{3} z}{\partial^{2} x \partial y}=\operatorname{Cos}(2 \mathrm{x}+3 \mathrm{y})$
(b) Solve $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$

Module 2

13 (a) Derive the solution of the one dimensional wave equation $\frac{\partial^{2 y}}{\partial t^{2}}=c^{2} \frac{\partial^{2 y}}{\partial x^{2}}$ using variable separable method.
(b) An insulated rod of length 1 has its ends A and B maintained at $0^{0} \mathrm{C}$ and
$100^{0} \mathrm{C}$ respectively until steady state conditions prevail. If B is suddenly reduced to $0^{0} \mathrm{C}$ and maintained at $0^{0} \mathrm{C}$, find the temperature at a distance x from A at time t.

14 (a) Derive the one dimensional heat flow equation.
(b) A tightly stretched string of length l with fixed ends is initially in equilibrium position .If it is set vibrating by giving each points a velocity $v_{0} \sin ^{3}\left(\frac{\pi x}{l}\right)$. Find the displacement $\mathrm{y}(\mathrm{x}, \mathrm{t})$.

Module 3

15 (a) Find an analytic function whose real part is $u=\sin x$ coshy
(b) Find the image of the strip $\frac{1}{2} \leq x \leq 1$ under the transformation $w=z^{2}$

16 (a) Check whether $\mathrm{w}=\log \mathrm{z}$ is analytic.
(b) Show that under the transformation $\mathrm{w}=\frac{1}{z}$, the circle $x^{2}+y^{2}-6 x=0$ is transformed into a straight line in the W plane.

Module 4

17 (a) Integrate counter clockwise around the unit circle $\oint_{C} \frac{\sin 2 z}{z^{4}} \mathrm{dz}$
(b) Find the Taylor series of $\frac{1}{1+z}$ about the centre $z_{0}=\mathrm{i}$

18 (a) Evaluate $\int_{0}^{1+i}\left(x-y+i x^{2}\right) \mathrm{dz}$ along the parabola $\mathrm{y}=x^{2}$.
(b) Evaluate $\oint_{c} \frac{\log z}{(z-4)^{2}}$ dz counter clockwise around the circle $|z-3|=2$. Module 5

19 (a) Find the Laurent's series expansion of $\frac{z^{2}-1}{z^{2}-5 z+6}$ about $\mathrm{z}=0$ in the region
$2<|z|<3$
(b)

Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{\sqrt{2}-\cos \theta}$.
20 (a) Evaluate $\oint_{C} \frac{z-23}{z^{2}-4 z-5}$ dz where $C:|z-2-i|=3.2$ using Residue theorem.
(b) Evaluate $\int_{0}^{\infty} \frac{\left(x^{2}+2\right) d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$.

