12

Re	eg No	o.: Name:	
	SE	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY EVENTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), DECEMBER 2019	
		Course Code: CE403 Course Name: STRUCTURL ANALYSIS - III	
Max. Marks: 100 Duration: 3 I			ours
		Assume missing data if any and state it PART A Answer any two full questions, each carries 15 marks. M	arks
1	a)	What are the assumptions involved in cantilever method?	3
	b)	Analyse the frame in Figure.1 using portal method. Beams and columns have same size.	
		16 kN 3.6 m	

2 a) Find the maximum hogging moment and shear force at the support due to gravity loading in the frame shown in Figure.2. Frames are spaced at 3.0 m c/c. Dead load = 3 kN/m^2 , Live load = 2 kN/m^2 , Weight of beam = 2 kN/m and storey height = 3 m.

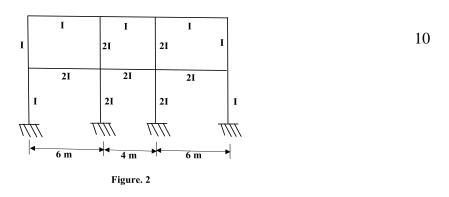
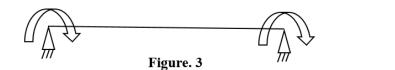

7.2 m

Figure. 1

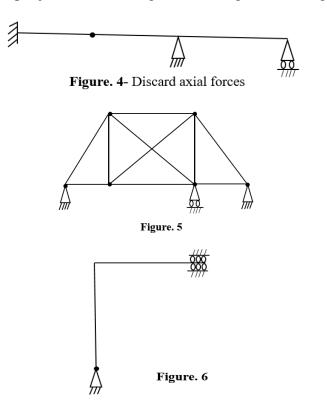
6 m

4.8 m

7


5.4 m

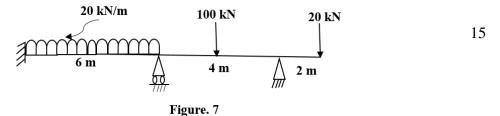
40 kN


5

9

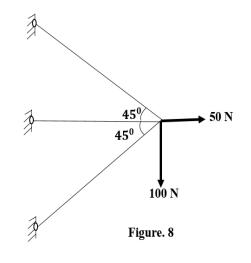
b) Derive Flexibility matrix for the following beam element in Figure.3.

3 a) Find the Kinematic indeterminacy and Static indeterminacy of the continuous beam (Figure.4), pin jointed frame (Figure.5) and rigid frame (Figure.6)



b)	Derive Flexibility matrix for the truss element.	3
c)	Define flexibility coefficient and stiffness coefficient.	3

PART B


Answer any two full questions, each carries 15 marks.

4 a) Analyse the continuous beam shown in Figure.7, using flexibility matrix method and find the bending moments.

5	a)	Establish the relationship between flexibility matrix and stiffness matrix.	4
	b)	What is displacement transformation matrix?	5
	c)	What is lack of fit? Explain one method to estimate the member forces due to lack	6
		of fit using either flexibility or stiffness methods.	0

6 a) Find the member forces in the truss shown in Figure.8 using stiffness method.

PART C

Answer any two full questions, each carries 20 marks.

7 a) Analyse and draw bending moment diagram for the frame shown in Figure.9 using direct stiffness method.

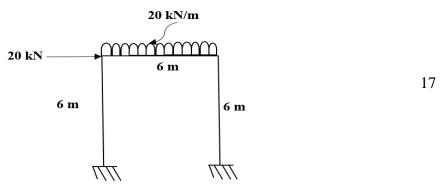


Figure. 9

	b)	What is direct stiffness method?	3
8	a)	Differentiate between local coordinates and global coordinates.	4
	b)	How global stiffness matrix can be derived from the element stiffness matrix?	6
	c)	Describe Vibration Isolation? What are the different types of vibration isolation?	10
9	a)	What is critical damping?	3
	b)	What is magnification factor?	3

G192032

	A person standing on a spring produces a deflection of 1.0 mm to the spring. Find		
c)	the natural frequency and Time period.	4	
d)	A vibrating system consists of mass of 10 kg, spring of stiffness 240 N/m and a		
	damper with a damper coefficient of 10 N-s/m. Determine		
	i) Damping factor		
	ii) Natural frequency of damped vibration	10	

iii) Logarithmic decrement

- iv) Ratio of successive amplitudes
- v) Number of cycles after which initial amplitude reduced to 25%
