F F7190

Reg No.:_____

Total Pages: 2

Name:____

		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2017	
		Course Code: CS361	
		Course Name: SOFT COMPUTING (CS)	
Max	x. M	arks: 100 Duration: 3 l	Hours
		PART A	
1		Answer all questions, each carries 3 marks. Explain the different learning mechanisms used in Artificial Neural Networks with the help of necessary diagrams.	Mark:
2		With the help of an example, state the role of bias in determining the net output of an Artificial Neural Network.	(3)
3		Illustrate the different steps involved in the training algorithm of Perceptrons.	(3)
4		State the concept of delta-rule used in Adaptive Linear Neurons.	(3)
		PART B	
		Answer any two full questions, each carries 9 marks.	
5		Design a Hebb network to realize logical OR function.	(9)
6		Implement AND logical function using Perceptrons.	(9)
7	a)	How is the training algorithm performed in back-propagation neural networks?	(5)
	b)	With graphical representations, explain the activation functions used in Artificial Neural Networks.	(4)
		PARTC	
		Answer all questions, each carries 3 marks.	
8		List and explain the various operations that can be performed in fuzzy relations.	(3)
9		Law of contradiction and law of excluded middle cannot be applied to fuzzy sets. Give proper justification to the statement.	(3)
10		With the help of a figure, explain the features of fuzzy membership functions.	(3)
11		How can the role of lambda-cuts in defuzzification be justified? Give examples. PART D	(3)
		Answer any two full questions, each carries 9 marks.	
12	a)	Given two fuzzy sets, w_1 and w_2 , such that $w_1 = \sqrt{x_1} + \sqrt{x_2} + \sqrt{x_3} + \sqrt{x_4}$	(4)
		$\frac{0}{x5} \text{ and } N_{\sim} = \left\{ \frac{0}{y1} + \frac{0.2}{y2} + \frac{0.7}{y3} + \frac{1}{y4} + \frac{0.7}{y5} + \frac{0.2}{y6} + \frac{0}{y7} \right\}. \text{ Construct a relation}$ $R_{\sim} = M_{\sim} \times N_{\sim}.$	
	b)		(5)
13	a)	using max-min composition. Consider the following two fuzzy sets: $A_{\sim} = \left\{ \frac{0.2}{1} + \frac{0.3}{2} + \frac{0.4}{3} + \frac{0.5}{4} \right\}$	(4)

F F7190

$$B_{\sim} = \left\{ \frac{0.1}{1} + \frac{0.2}{2} + \frac{0.2}{3} + \frac{1}{4} \right\}$$

Find the algebraic sum, algebraic product, bounded sum, and bounded difference of the given sets.

- b) Using inference method, find the membership values of the triangular shapes; (5) isosceles (I), right angled (R), isosceles and right angled (IR), equilateral (E), and other triangles (T); for a triangle with angles 60, 55, and 65.
- 14 a) Consider the following fuzzy relation, $R_{\sim} = \begin{bmatrix} 1 & 0.8 & 0 & 0.1 & 0.2 \\ 0.8 & 1 & 0.4 & 0 & 0.9 \\ 0 & 0.4 & 1 & 0 & 0 \\ 0.1 & 0 & 0 & 1 & 0.5 \\ 0.2 & 0.9 & 0 & 0.5 & 1 \end{bmatrix}$ (4.5)

Show that the above relation is a tolerance relation.

b) Also, show that the λ -cut relation of the above relation results in a crisp tolerance (4.5) relation.

PART E

Answer any four full questions, each carries 10 marks.

- 15 a) "A compound rule may be decomposed and reduced into a number of simple (6) canonical rule forms". Explain the different methods to do so.
 - b) How can one perform the aggregation of fuzzy rules? (4)
- With the help of necessary block diagrams, compare Mamdani and Sugeno (10) Fuzzy Inference Systems.
- 17 a) With the help of examples, explain the various fuzzy propositions. (6)
 - b) Explain the different methods for fuzzy approximate reasoning. (4)
- 18 a) Explain the different methods of encoding that are possible in genetic algorithm. (6)
 - b) "Termination criterion for a genetic algorithm brings the search to a halt". (4) Explain the various termination techniques.
- With the help of examples, explain the various crossover techniques employed in (10) genetic algorithms.
- 20 a) Illustrate the different steps in genetic-neuro hybrid systems with the help of a (6) neat block diagram.
 - b) Distinguish between the processes of tuning and learning in genetic-fuzzy rule (4) based systems.
