	-

B1A005

Pages: 3

Reg. No.______ Name:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER B.TECH DEGREE EXAMINATION, JUNE/JULY 2017

Course Code: MA 101
Course Name: CALCULUS

(For 2015 Admission and 2016 Admission)

Max. Marks:100 Duration: 3 hours

PART A

Answer all questions. Each question carries 5 marks.

- 1. (a) Find the interval of convergence and radius of convergence of the infinite series $\sum_{n=0}^{\infty} n! \, x^n$ (2)
 - (b) Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{5n-1}$ converges or not (3)
- 2. (a) Find the slope of the surface $z = \sqrt{3x + 2y}$ in the y-direction at the point (4,2)
 - (b) Find the derivative of $w = x^2 + y^2$ with respect to t along the path $x = at^2$, y = 2at(3)
- 3. (a) Find the directional derivative of $f(x, y) = xe^y$ at (1,1) in the direction of the vector i j (2)
 - (b) If $\vec{F}(t)$ has a constant direction, then prove that $\vec{F} \times \frac{d\vec{F}}{dt} = 0$ (3)
- 4. (a) Evaluate $\int_0^1 \int_0^1 \frac{1}{\sqrt{(1-x^2)(1-y^2)}} dxdy$ (2)
 - (b) Evaluate $\iint_R \frac{\sin x}{x} dxdy$ where R is the triangaular region bounded by the x-axis, y = x and x = 1.
- 5. (a) Show that $\int_A^B (2xy + z^3) dx + x^2 dy + 3xz^2 dz$ is independent of the path joining the points A and B. (2)
 - (b) If $\vec{r} = xi + yj + zk$ and $r = |\vec{r}|$, then prove that $\nabla^2 r^n = n(n+1)r^{n-2}$ (3)
- 6. (a) Using line integral evaluate the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (2)
 - (b)Evaluate $\int_C (e^x dx + 2y dy dz)$ where C is the curve $x^2 + y^2 = 4$, z = 2. (3)

PART B

Answer any two questions each Module I to IV

Module I

- 7. Determine whether the series converge or diverge $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$ (5)
- 8. Check the absolute convergence or divergence of the series $\sum_{n=1}^{\infty} (-1)^n \frac{(2n-1)!}{3^n}$ (5)

9. Find the Taylor series expansion of $\log \cos x$ about the point $\frac{\pi}{3}$ (5)

Module II

10. If
$$u = log (x^3 + y^3 + z^3 - 3xyz)$$
, Show that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}$ (5)

- 11. The length, width and height of a rectangular box are measured with an error of atmost 5%. Use a total differential to estimate the maximum percentage error that results if these quantities are used to calculate the diagonal of the box. (5)
- 12. Locate all relative extrema and saddle points of $f(x, y) = x^4 + y^4 2x^2 + 4xy 2y^2$ (5)

Module III

- 13. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point (2, -1, 2)
- 14. Let $\vec{r} = xi + yj + zk$ and $r = |\vec{r}|$, then prove that $\nabla f(r) = \frac{f'(r)}{r}\vec{r}$. (5)
- 15. Find an equation of the tangent plane to the ellipsoid $2x^2 + 3y^2 + z^2 = 9$ at the point (2,1,1) and determine the acute angle that this plane makes with the XY plane. (5)

Module IV

- 16. Change the order of integration and hence evaluate $\int_0^1 \int_{x^2}^{2-x} xy \, dy \, dx$ (5)
- 17. Evaluate $\int_0^2 \int_0^{\sqrt{(4-x^2)}} y(x^2 + y^2) dx dy$ using polar co-ordinates (5)
- 18. Find the volume of the paraboloid of revolution $x^2 + y^2 = 4z$ cut off by the plane z = 4 (5)

Module V

Answer any 3 questions.

- 19. Evaluate the line integral $\int_C (xy + z^3) ds$ from (1,0,0) to (-1,0, π) along the helix C that is represented by the parametric equations $x = \cos t$, $y = \sin t$, z = t (5)
- 20. Evaluate the line integral $\int_C (y-x) dx + x^2 y dy$ along the curve C, $y^2 = x^3$ from (1, -1) to (1,1) (5)
- 21. Find the work done by the force field $\vec{F} = (x + y)i + xyj z^2k$ along the line segment from (0,0,0) to (1,3,1) and then to (2,-1,5).
- 22. Show that $\vec{F} = (2xy + z^3)i + x^2j + 3xz^2k$ is a conservative vector field. Also find its scalar potential. (5)
- 23. Find the values of constants a, b, c so that $\vec{F} = (axy + bz^3)i + (3x^2 cz)j + (3xz^2 y)k$ may be irrotational. For these values of a, b, c find the scalar potential of \vec{F} (5)

Module VI

Answer any 3 questions.

- 24. Verify Green's theorem for $\int_C (xy + y^2)dx + x^2 dy$ where C is bounded by y = x and $y = x^2$ (5)
- 25. Apply Green's theorem to evaluate $\int_C (2x^2 y^2)dx + (x^2 + y^2)dy$ where C is the boundary of the area enclosed by the x-axis and the upper half of the circle $x^2 + y^2 = a^2$ (5)
- 26. Apply Stokes theorem to evaluate $\int_C (x+y)dx + (2x-y)dy + (y+z)dz$ where C is the boundary of the triangle with vertices (0,0,0), (2,0,0) and (0,3,0) (5)
- 27. Use Divergence theorem to evaluate $\iint_S \vec{F} \cdot \vec{n} dS$ where $\vec{F} = xi + zj + yzk$ and S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1. Also verify this result by computing the surface integral over S (5)
- 28. State Divergence theorem. Also evaluate $\iint_S \vec{F} \cdot \vec{n} dS$ where $\vec{F} = axi + byj + czk$ and S is the surface of the sphere $x^2 + y^2 + z^2 = 1$ (5)
