A A7001

Total Pages: 3 Reg No.:____ APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2017 **Course Code: MA101** Course Name: CALCULUS Max. Marks: 100 Duration: 3 Hours PART A Answer all questions, each carries5 marks. Marks 1 a) (2) Test the convergence of the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt[3]{2k-1}}$. b) Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{x^n}{2n+3}$. (3) 2 Find the Slope of the surface $z = xe^{-y} + 5y$ in the y-direction at the point (4,0). (2) Find the derivative of $z = \sqrt{1 + x - 2xy^4}$ with respect to t along the path (3) $x = \log t$, y = 2t. 3 Find the directional derivative of $f = x^2y - yz^3 + z$ at (-1,2,0) in the direction of (2) Find the unit tangent vector and unit normal vector to $r(t) = 4\cos ti + 4\sin tj + tk$ (3) Evaluate $\int_{0}^{\log 3} \int_{0}^{\log 2} e^{x+2y} dy dx.$ (2) Evaluate $\iint xy \, dA$, where R is the region bounded by the curves $y = x^2$ and (3) $x = y^2$. (a) Find the divergence and curl of the vector $F(x, y, z) = yz i + xy^2 j + yz^2 k$. (2) (b) Evaluate $\int_C (3x^2 + y^2) dx + 2xy dy$ along the circular arc C given by (3) $x = \cos t$, $y = \sin t$ for $0 \le t \le \frac{\pi}{2}$. 6 (a) (2) Use line integral to evaluate the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. (b) Evaluate $\int_C (x^2 - 3y) dx + 3x dy$, where C is the circle $x^2 + y^2 = 4$. (3) PART B Module 1 Answer any two questions, each carries 5 marks. 7 (5)Test the convergence or divergence of the series $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$.

Α	A7001	
8	Test the absolute convergence of $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{(2k)!}{(3k-2)!}.$	(5)
9	Find the Taylor series for $\frac{1}{1+x}$ at $x=2$.	(5)
	Module 1I	
10	Answer any two questions, each carries 5 marks. Find the local linear approximation L to $f(x, y) = \log(xy)$ at P(1,2) and compare the error in approximating f by L at Q(1.01, 2.01) with the distance between P and Q.	(5)
11	Let $w = 4x^2 + 4y^2 + z^2$, $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$. Find	(5)
	$\frac{\partial w}{\partial \rho}$, $\frac{\partial w}{\partial \phi}$ and $\frac{\partial w}{\partial \theta}$.	
12	Locate all relative extrema and saddle points of $f(x, y) = 4xy - x^4 - y^4$.	(5)
	Module 1II	
13	Answer any two questions, each carries 5 marks. Find the equation of the tangent plane and parametric equation for the normal line to the surface $x^2 + y^2 + z^2 = 25$ at the point $(3,0,4)$.	(5)
14	A particle is moving along the curve $r(t) = (t^3 - 2t)i + (t^2 - 4)j$ where t denotes the time. Find the scalar tangential and normal components of acceleration at $t = 1$. Also find the vector tangential and normal components of acceleration at $t = 1$.	(5)
15	The graphs of $r_1(t) = t^2 i + t j + 3t^3 k$ and $r_2(t) = (t - 1)i + \frac{1}{4}t^2 j + (5 - t)k$ are	(5)
	intersect at the point $P(1,1,3)$. Find, to the nearest degree, the acute angle between the tangent lines to the graphs of $r_1(t) \& r_2(t)$ at the point $P(1,1,3)$.	
	Module 1V	
16	Answer any two questions, each carries marks.	(5)
	Change the order of integration and evaluate $\int_{0}^{1} \int_{4x}^{4} e^{-y^2} dy dx$.	()
17	Use triple integral to find the volume bounded by the cylinder $x^2 + y^2 = 9$ and between the planes $z = 1$ and $x + z = 5$.	(5)
18	Find the area of the region enclosed between the parabola $y = \frac{x^2}{2}$ and the line	(5)
	y=2x.	
	Module V	
10	Answer any three questions, each carries5 marks.	(5)
19	Determine whether $F(x, y) = (\cos y + y \cos x)i + (\sin x - x \sin y)j$ is a	(5)
20	conservative vector field. If so find the potential function for it. Show that the integral $\int_{(1.1)}^{(3.3)} (e^x \log y - \frac{e^x}{x}) dx + (\frac{e^x}{y} - e^x \log x) dy$ where x and y	(5)
	are positive is independent of the path and find its value.	

that moves along the curve $C: r(t) = ti + t^2 j + t^3 k (0 \le t \le 1)$.

(5)

Find the work done by the force field F(x, y, z) = xyi + yzj + xzk on a particle

21

A A7001

- Let $\overline{r} = xi + yj + zk$ and $r = ||\overline{r}||$, let f be a differentiable function of one variable, then show that $\nabla f(r) = \frac{f'(r)}{r}\overline{r}$.
- Find $\nabla \cdot (\nabla \times F)$ and $\nabla \times (\nabla \times F)$ where $F(x, y, z) = e^{xz}i + 4xe^{y}j e^{yz}k$. (5)

Module VI

Answer any three questions, each carries5 marks.

- Use Green's Theorem to evaluate $\int_{C} \log(1+y)dx \frac{xy}{(1+y)}dy$, where C is the triangle with vertices (0,0), (2,0) and (0,4).
- Evaluate the surface integral $\iint_{\sigma} xzds$, where σ is the part of the plane x + y + z = 1 (5) that lies in the first octant.
- Using Stoke's Theoremevaluate $\int_C F.dr$ where $F(x, y, z) = xzi + 4x^2y^2j + yxk$, C (5) is the rectangle $0 \le x \le 1, 0 \le y \le 3$ in the plane z = y.
- Using Divergence Theorem evaluate $\iint_{\sigma} \overline{F} \cdot n \, ds$ where (5) $F(x,y,z) = x^3 i + y^3 j + z^3 k, \ \sigma \text{ is the surface of the cylindrical solid bounded by}$ $x^2 + y^2 = 4, \ z = 0 \text{ and } z = 4.$
- Determine whether the vector fields are free of sources and sinks. If it is not, locate them

 (i) $(y+z)i xz^3j + x^2 \sin yk$ (ii) $xyi 2xyj + y^2k$