D	B3D057	Total pages:2
Re	g. No.:	Name:
•		TECHNOLOGICAL UNIVERSITY
		DEGREE EXAMINATION, JANUARY 2017
		urse Code: EC205 CTRONIC CIRCUITS (AE, EC)
Max.	Marks: 100	Duration: 3 Hours
	a la la Computación	PART A
		nd Answer EITHER Question 2 OR Question 3 Question Carries 15 marks.
1.	. a) Define the THREE stability	y factors of Common Emitter amplifier and derive
	expression for the Current state	oility factor of a potential divider bias CE amplifier
	circuit.	(8)
	b) A Common Base amplifier is	driven by a voltage source of internal resistance 60Ω .
	The load resistance is $20K\Omega$. T	he transistor has $\mathbf{h_{ib}} = 22\Omega$, $\mathbf{h_{rb}} = 0.0003$, $\mathbf{h_{fb}} = -0.98$
	and $\mathbf{h_{ob}} = 0.5 \mu A/V$. Compute the	e current gain A_I , input resistance $\mathbf{R_i}$, voltage gain $\mathbf{A_V}$.
	overall voltage gain Avs. overa	Il current gain A_{Is} (considering the source resistance
	also), and operating power gain	$A_{\rm P}$ (7)
2.	. a) An ideal 1μS pulse from a pu	ilse generator is fed to an amplifier. Calculate and plot
	the output waveform with a	rise time of the capacitor 2.2 RC. The upper 3dB
	frequency is 0.1 MHz.	$\mathbf{H}^{\mathbf{SC}}$
	b) How amplifiers are classif	ed based on their Q-points? Explain showing the
	positions of the Q-points on	the respective load lines and current transfer
	characteristic curves for at least	st THREE types of classes. Also compare their merits
	and demerits.	(8)
3.	. a) Define the small signal hyb	orid parameters of a Common Emitter configuration.
	Show how to determine their va	•
	b) Draw the circuit of a two-st	age RC coupled amplifier. Derive expressions for its

PART B

values for the cascaded two-stage.

Question 4 is <u>COMPULSORY</u> and Answer EITHER Question 5 OR Question 6 Each Full Question Carries 15 marks.

effective lower cut-off frequency and effective upper cut-off frequency. If the individual stages are having $\mathbf{f}_L = 20$ Hz and $\mathbf{f}_H = 200$ kHz, calculate the respective

4. a) What are the physical origins of resistances in the high frequency hybrid π model of a CE transistor amplifier? Explain the different parameters in the hybrid π circuit.

(7)

D B3D057 Total pages:2

b) Make a distinction between "voltage" feedback and "current" feedback in amplifier circuits. Discuss the merits in each case and derive expressions for the net output resistance in each case.

(8)

- 5. a) Sketch the topology for the generalized resonant circuit oscillator, using impedances z_1 , z_2 and z_3 . Derive the expression for the frequency of oscillation. Under what conditions does the configuration reduce to Colpitts oscillator? (10)
 - b) Derive the equation which shows that the sensitivity of an amplifier reduces by applying negative feedback to the circuit. (5)
- 6. a) Deduce the high frequency equivalent circuit of a potential divider bias CE amplifier circuit. Derive the expression for the CE short circuit current gain as a function of frequency. Explain with frequency response characteristics diagram, the relationship between $\mathbf{f}_{\mathbf{\beta}}$ and $\mathbf{f}_{\mathbf{T}}$. (12)
 - b) Draw the circuit of a cascode amplifier and explain its properties. (3)

PART C

Question is 7 <u>COMPULSORY</u> and Answer EITHER Question 8 OR Question 9 Each Full Question Carries 20 marks.

- 7. a) With neat circuit diagram and necessary waveforms, explain how a transistorized astable multivibrator is working as a free running oscillator. Derive the expression for the frequency. Show in the circuit diagram, how you can eliminate the rounding of the collector waveform and make the edges sharp? (12)
 - b) An N-channel E-MOSFET used in a potential divider bias CS amplifier has $I_{D(ON)}$ = 4mA at $V_{GS(ON)}$ = 8V, V_{GST} = 4V, g_m = 2 mS. Calculate values of (i) V_{GS} . (ii) V_{DS} . (iii) I_D and (iv) output Voltage, if R_1 =60k Ω , R_2 = 40k Ω , R_D = 6k Ω , V_{DD} = 15V and the ac input signal = 80mV. (8)
- 8. a) Using fictitious generator block diagram, show how a Bootstrap generator can produce linear sweep voltage by constant current charging. Draw a transistorized circuit and waveforms to explain the Bootstrap action to generate linear sweep. (12) b) A Class B push-pull power amplifier is supplied with $V_{CC} = 50V$. The signal swings the collector voltage down to $V_{min} = 5V$. The total dissipation in both transistors is 40W. Calculate the total output power and conversion efficiency. (8)
- 9. a) Draw the circuit of a series pass voltage regulator which uses a feedback. Explain its working when the input voltage as well as load current varies. Design your circuit to deliver 6V, 100mA maximum load current. (12)
 - b) Draw the circuit of a Drain feedback bias circuit for E-MOSFET. Explain its working and properties. (8)