Course No.	Course Name	L-T-P-Credits	Year of Introduction
ME201	MECHANICS OF SOLIDS	3-1-0-4	2016

Prerequisite: nil

Course Objectives:

- 1. To acquaint with the basic concepts of stress and deformation in solids.
- 2. To practice the methodologies to analyse stresses and strains in simple structural members, and to apply the results in simple design problems.

Syllabus

Analysis of deformable bodies : stress, strain, material behaviour, deformation in axially loaded bars, biaxial and triaxial deformation. Torsion of elastic circular members, design of shafts. Axial force, shear force and bending moment in beams. Stresses in beams: flexure and shear stress formulae, design of beams. Deflection of beams. Transformation equations for plane state of stress and strain, principal planes and stresses, Mohr's circle. Compound stresses: combined axial, flexural and shear loads – eccentric loading. Buckling: Euler's theory and Rankine's formula for columns.

Expected outcomes: At the end of the course students will be able to

- 1. Understand basic concepts of stress and strain in solids.
- 2. Determine the stresses in simple structural members such as shafts, beams, columns etc. and apply these results in simple design problems.
- 3. Determine principal planes and stresses, and apply the results to combined loading case.

Text Books:

- 1. Rattan, Strength of Materials, 2e McGraw Hill Education India, 2011
- 2. S.Jose, Sudhi Mary Kurian, Mechanics of Solids, Pentagon, 2015

References Books:

- 1.S. H. Crandal, N. C. Dhal, T. J. Lardner, An introduction to the Mechanics of Solids, McGraw Hill, 1999
- 2. R. C. Hibbeler, Mechanics of Materials, Pearson Education, 2008
- 3. I.H. Shames, J. H. Pitarresi, Introduction to Solid Mechanics, Prentice Hall of India, 2006
- 4. James M.Gere, Stephen Timoshenko, Mechanics of Materials, CBS Publishers & Distributors, New Delhi,2012

- 5. F. Beer, E. R. Johnston, J. T. DeWolf, Mechanics of Materials, Tata McGraw Hill, 2011
- 6. A. Pytel, F. L. Singer, Strength of Materials, Harper & Row Publishers, New York, 1998
- 7. E. P. Popov, T. A. Balan, Engineering Mechanics of Solids, Pearson Education, 2012
- 8. R. K. Bansal, Mechanics of solids, Laxmi Publications, 2004
- 9. P. N. Singh, P. K. Jha, Elementary Mechanics of Solids, Wiley Eastern Limited, 2012

	Course Plan		
Module	Contents	Hours	Sem. Exam Marks
	Introduction to analysis of deformable bodies – internal forces – method of sections – assumptions and limitations. Stress – stresses due to normal, shear and bearing loads – strength design of simple members. Definition of linear and shear strains.	2	
Ι	Material behavior – uniaxial tension test – stress-strain diagrams concepts of orthotropy, anisotropy and inelastic behavior – Hooke's law for linearly elastic isotropic material under axial and shear deformation		15%
	Deformation in axially loaded bars – thermal effects – statically indeterminate problems – principle of superposition - elastic strain energy for uniaxial stress.		
	Definition of stress and strain at a point (introduction to stress and strain tensors and its components only) – Poisson's ratio – biaxial and triaxial deformations – Bulk modulus - Relations between elastic		1.50/
Π	Torsion: Shafts - torsion theory of elastic circular bars – assumptions and limitations – polar modulus - torsional rigidity – economic cross-sections – statically indeterminate problems – shaft design for torsional load.		15%
	FIRST INTERNAL EXAM		
	Beams- classification - diagrammatic conventions for supports and loading - axial force, shear force and bending moment in a beam	2	
III	Shear force and bending moment diagrams by direct approach	3	15%
m	Differential equations between load, shear force and bending moment. Shear force and bending moment diagrams by summation approach – elastic curve – point of inflection.	5	1370
IV	Stresses in beams: Pure bending – flexure formula for beams assumptions and limitations – section modulus - flexural rigidity - economic sections – beam of uniform strength.	4	15%
	Shearing stress formula for beams – assumptions and limitations – design for flexure and shear.	4	-
	SECOND INTERNAL EXAM		
V	Deflection of beams: Moment-curvature relation – assumptions and limitations - double integration method – Macaulay's method - superposition techniques – moment area method and conjugate beam ideas for simple cases.	6	20%
	Transformation of stress and strains: Plane state of stress - equations of transformation - principal planes and stresses.	4	
	Mohr's circles of stress – plane state of strain – analogy between stress and strain transformation – strain rosettes	3	
VI	Compound stresses: Combined axial, flexural and shear loads – eccentric loading under tension/compression - combined bending and twisting loads.		20%

Theory of columns: Buckling theory –Euler's formula for long columns – assumptions and limitations – effect of end conditions - slenderness ratio – Rankin's formula for intermediate columns.

END SEMESTER EXAM

Question Paper Pattern

Total marks: 100, Time: 3 hrs The question paper should consist of three parts **Part A**

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code	Course Name	L-T-P- Credits	Year of Introduction
ME202	ADVANCED MECHANICS OF SOLIDS	3-1-0-4	2016
Prerequisite	: ME201 Mechanics of solids	TΔN	Л
 To implication To studie To acquire 	ectives: The main objectives of the course are bart concepts of stress and strain analyses in a solid. dy the methodologies in theory of elasticity at a basic level. uaint with the solution of advanced bending problems. familiar with energy methods for solving structural mechan	V	L
Syllabus			• 1• 1
relations, con elasticity, Ai	concepts of stress, equations of equilibrium, strain com mpatibility conditions, constitutive relations, boundary or ry's stress function method, unsymmetrical bending of strais center, energy methods in elasticity, torsion of non-circul	conditions, ight beams, b	2D problems ir ending of curved
 Apply Use the Solve g 	tcome: At the end of the course students will be able to concepts of stress and strain analyses in solids. e procedures in theory of elasticity at a basic level. general bending problems. energy methods in structural mechanics problems.		
 S. M. A S. Jose L. Gov U. Sara 	s: reenath, Advanced Mechanics of Solids, McGraw Hill,200 A. Kazimi, Solid Mechanics, McGraw Hill,2008 , Advanced Mechanics of Materials, Pentagon Educational indaraju, TG Sitharaman, Applied elasticity for Engineers, avanan, Advanced Solid Mechanics, NPTEL Lal, Advanced Mechanics of Solids, Siva Publications and	Services,201 NPTEL	
References I	Books:		
2. R.J. At 3. J. P. D 4. C. K. V 5. <u>www.s</u>	imoshenko, J. N. Goodier, Theory of elasticity, McGraw H kin, and N. Fox, An introduction the theory of elasticity, L en Hartog, Advanced Strength of Materials, McGraw Hill, Vang, Applied Elasticity, McGraw Hill,1983 <u>olidmechanics.org/contents.htm</u> - Free web book on Applied A.F. Bower.	ongman,1980 1987	

	Course Plan				
Module	Contents	Hours	Sem. Exam Marks		
I	Introduction to stress analysis in elastic solids - stress at a point – stress tensor – stress components in rectangular and polar coordinate systems - Cauchy's equations – stress transformation – principal stresses and planes - hydrostatic and deviatoric stress components, octahedral shear stress - equations of equilibrium	6	15%		
·	Displacement field – engineering strain - strain tensor (basics only) – analogy between stress and strain tensors - strain-displacement relations (small-strain only) – compatibility conditions	4			
	Constitutive equations – generalized Hooke's law – equations for linear elastic isotropic solids - relation among elastic constants – Boundary conditions – St. Venant's principle for end effects – uniqueness theorem	4			
II	2-D problems in elasticity - Plane stress and plane strain problems – stress compatibility equation - Airy's stress function and equation – polynomial method of solution – solution for bending of a cantilever with an end load	4	15%		
	FIRST INTE <mark>R</mark> NAL EXAM				
	Equations in polar coordinates (2D) – equilibrium equations, strain- displacement relations, Airy's equation, stress function and stress components (only short derivations for examination)				
III	Application of stress function to Lame's problem and stress concentration problem of a small hole in a large plate (only stress distribution)		15%		
	Axisymmetric problems – governing equations – application to thick cylinders, , rotating discs.	4			
	Unsymmetrical bending of straight beams (problems having c/s with one axis of symmetry only) – curved beams (rectangular c/s only) – shear center of thin walled open sections (c/s with one axis of symmetry only)		15%		
IV	Strain energy of deformation – special cases of a body subjected to concentrated loads, moment or torque - reciprocal relation – strain energy of a bar subjected to axial force, shear force, bending moment and torque				
	SECOND INTERNAL EXAM				
V	Maxwell reciprocal theorem – Castigliano's first and second theorems – virtual work principle – minimum potential energy theorem.	5	20%		

	Torsion of non-circular bars: Saint Venant's theory - solutions for circular and elliptical cross-sections	4	
VI	Prandtl's method - solutions for circular and elliptical cross-sections - membrane analogy.Torsion of thin walled tubes, thin rectangular sections, rolled sections and multiply connected sections	4	20%
	END SEMESTER EXAM	YL.	

Total marks: 100, Time: 3 hrs

The question paper should consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of $4 (3 \times 10 \text{ marks} = 30 \text{ marks})$

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 ($3 \times 10 \text{ marks} = 30 \text{ marks}$)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 ($4 \times 10 \text{ marks} = 40 \text{ marks}$)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

-510

Course No.	No.Course NameL-T-P-CreditsYear of In		Year of Introduction
ME203	MECHANICS OF FLUIDS	3-1-0-4	2016
Prerequisite: n	il		
2. To estab relevant	tives: the mechanics of fluid motion. blish fundamental knowledge of basic f to simple applications involving fluids iarize students with the relevance of fluid		
	s, Kinematics of fluid flow, Fluid Statics, andary Layer, Dimensional Analysis and		
 Calculat Become Apply th Evaluate Use dim 	ome: At the end of the course students wi e pressure variations in accelerating fluids conversant with the concepts of flow mea e momentum and energy equations to flui head loss in pipes and conduits. ensional analysis to design physical or nun namic similarity	using Euler's and B surements and flow d flow problems.	through pipes
 A S Sale References Bo Cengel, 1 Bansal R 2005 	ndran.P, Engineering Fluid Mechanics, PF em, Fluid Mechanics, Fathima Books,201 oks : Fluid Mechanics, McGraw Hill Educatio . K., A Textbook of Fluid Mechanics and N. and S. M. Seth, Hydraulics & Fluid Me	6 on India 2014 Hydraulic Machines	
2010. 5. Joseph K 6. Fox R. V 2009. 7. Shames	V. L., E. B. Wylie and K. W. Bedford, Flu Carz, Introductory Fluid Mechanics, Can V. and A. T. McDonald, Introduction to Fl I. H, Mechanics of Fluids, McGraw Hill, 1 M., Fluid Mechanics, 6/e, Tata McGraw H	nbridge University p luid dynamics, 5/e, J 1992.	ress,2010
_	2014		

	Course Plan		
Module	Contents	Hours	Sem. Exam Marks
Ι	Introduction: Fluids and continuum, Physical properties of fluids, density, specific weight, vapour pressure, Newton's law of viscosity. Ideal and real fluids, Newtonian and non-Newtonian fluids. Fluid Statics- Pressure-density-height relationship, manometers, pressure on plane and curved surfaces, center of pressure, buoyancy, stability of immersed and floating bodies, fluid masses subjected to uniform accelerations, measurement of pressure.	(15%
II	Kinematics of fluid flow: Eulerian and Lagrangian approaches, classification of fluid flow, 1-D, 2-D and 3-D flow, steady, unsteady, uniform, non-uniform, laminar, turbulent, rotational, irrotational flows, stream lines, path lines, streak lines, stream tubes, velocity and acceleration in fluid, circulation and vorticity, stream function and potential function, Laplace equation, equipotential lines flow nets, uses and limitations,	8	15%
	FIRST INTERNAL EXAM		
ш	Dynamics of Fluid flow: Fluid Dynamics: Energies in flowing fluid, head, pressure, dynamic, static and total head, Control volume analysis of mass, momentum and energy, Equations of fluid dynamics: Differential equations of mass, energy and momentum (Euler's equation), Navier-Stokes equations (without proof) in rectangular and cylindrical co-ordinates, Bernoulli's equation and its applications: Venturi and Orifice meters, Notches and Weirs (description only for notches and weirs). Hydraulic coefficients, Velocity measurements: Pitot tube and Pitot-static tube.	10	15%
IV	Pipe Flow: Viscous flow: Reynolds experiment to classify laminar and turbulent flows, significance of Reynolds number, critical Reynolds number, shear stress and velocity distribution in a pipe, law of fluid friction, head loss due to friction, Hagen Poiseuille equation. Turbulent flow: Darcy- Weisbach equation, Chezy's equation Moody's chart, Major and minor energy losses, hydraulic gradient and total energy line, flow through long pipes, pipes in series, pipes in parallel, equivalent pipe, siphon, transmission of power through pipes, efficiency of transmission, Water hammer, Cavitation.	12	15%
	SECOND INTERNAL EXAM		
V	Concept of Boundary Layer : Growth of boundary layer over a flat plate and definition of boundary layer thickness, displacement thickness, momentum thickness and energy thickness, laminar and turbulent boundary layers, laminar sub layer, velocity profile, Von- Karman momentum integral equations for the boundary layers, calculation of drag, separation of boundary and methods of control.	10	20%

VI	Dimensional Analysis and Hydraulic similitude: Dimensional analysis, Buckingham's theorem, important dimensional numbers and their significance, geometric, Kinematic and dynamic similarity, model studies. Froude, Reynold, Weber, Cauchy and Mach laws- Applications and limitations of model testing, simple problems only	8	20%	
----	--	---	-----	--

END SEMESTER EXAM

Question Paper Pattern Total marks: 100, Time: 3 hrs The question paper should consist of three parts

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

Part A

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)

Course No.	Course Name	L-T-P-Credits	Year of Introduction
ME204	THERMAL ENGINEERING	3-1-0-4	2016
Prerequisite: M	E205 Thermodynamics		
2. To intro	ives: ire knowledge on the working of steam t duce the combustion process in IC engi rstand air pollution from IC engines and	nes	and gas turbines
testing of IC	ing, boilers, steam nozzles, steam turbin Engines, fuels and fuel combustion, a .C. engines, gas turbines		
 Integrate into analy To apply 	ome: At the end of the course the student the concepts, laws and methodologies fr ysis of cyclic processes the thermodynamic concepts into variou steam turbines, compressors.	rom the course in the	
	orthy , Thermal Engineering, McGraw H out, Thermal Engineering, Laxmi publica		0003
References Bo	oks:		
2. T.D. Eas education		ynamics for engineer	ing technology, Pearson
4. Gill, P.W	vood, I.C engine fundamentals. McGraw- V., Smith, JR., J.H., and Ziurys, E.J nd IBH,1959	-	ernal combustion engines
5. Rathore,	Thermal Engineering, McGraw Hill Edu	cation India, 2010	
Steam Tables		S	17
6. R.S.Khu	mi, Steam table with Mollier chart,S.Cha	and,2008	

	Course Plan		
Module	Contents	Hours	Sem. Exam Marks
I	Steam engineering- T- S diagram, Mollier chart, Steam cycles- Rankine cycle, Modified Rankine cycle, Relative efficiency, Improvement in steam cycles-Reheat, Regenerative and Binary vapor cycle Steam Boilers: Types of boilers –Cochran boiler, Babcock and Wilcox boiler, Benson boiler, La Mont boiler, Loeffler boiler, Velox boiler, Boiler Mountings and Accessories Steam nozzles:-Types of nozzle- Velocity of steam, mass flow rate, critical pressure ratio and its significance, effect of friction, super saturated flow	8	15%
II	Steam turbines: classification, compounding of turbines-pressure velocity variation, velocity diagrams, work done, efficiency, condition for maximum efficiency, multistage turbines-condition line, stage efficiency. Steam turbine performance-reheat factor, degree of reaction, cycles with reheating and regenerative heating, governing of turbines	8	15%
	FIRST INTERNAL EXAM		
ш	Internal combustion engines: classification of I.C. Engines- four stroke and two stroke I.C. Engines, Comparison of four stroke and two stroke Engine. Wankel Engine, Air standard cycle-Carnot cycle, Otto cycle; Diesel cycle, dual combustion cycle, comparison of Otto, diesel and dual combustion cycles. Stirling and Ericsson cycles, air standard efficiency, specific work output, work ratio, Actual cycle analysis, deviation of actual engine cycle from ideal cycle. Rotary engines, Stratified charge engine , super charging of SI and CI Engines – turbo charging. Variable specific heats.	10	15%
IV	Performance Testing of I C Engines: Indicator diagram, mean effective pressure. Torque, Engine power- BHP, IHP. Engine efficiency- mechanical efficiency, volumetric efficiency, thermal efficiency and relative efficiency, Specific fuel consumption. Testing of I C engines- Morse test, Heat balance test and Retardation test Fuels and fuel combustion: flash point and fire point, calorific value, Fuels for SI and CI engine, Important qualities of SI and CI engine fuels, Rating of SI engine and CI engine fuels, Dopes, Additives, Gaseous fuels, LPG, CNG, Biogas, Producer gas. Analysis of fuel combustion-A/F ratio, equivalence ratio, minimum quantity of air, flue gas analysis, excess air.	10	15%
	SECOND INTERNAL EXAM		
	Air pollution from I.C. Engine and its remedies: Pollutants from S.I. and C.I. Engines, Methods of emission control, alternative fuels for I.C. Engines; the blending of fuels, Bio fuels. Combustion in I.C. Engines: Combustion phenomena in S.I. engines; Ignition limits, stages of combustion in S.I. Engines, Ignition lag, velocity of flame propagation, auto ignition, detonation; effects of engine variables on detonation; theories of detonation, octane rating of fuels;	10	20%

Gas turbines: cla	Ders.	
cycles-open, close cycle-P-v and T-s turbine efficiencie output with and wi gas turbine and Improvements of and reheating-cycl compressor work a	ssification, Thermodynamic analysis of gas turbine ed and semi closed cycle; ideal working cycle- Brayton diagram, thermal efficiency. Effect of compressor and s. Optimum pressure ratio for maximum specific work ithout considering machine efficiencies. Comparison of IC engines, Analysis of open cycle gas turbine, the basic gas turbine cycles-regeneration, intercooling le efficiency and work output-Condition for minimum and maximum turbine work. Combustion chambers for ure loss in combustion process and stability loop.	20%

Total marks: 100, Time: 3 hrs

The question paper should consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

Course No.	Course Name	L-T-P-Credits	Year of Introduction
ME205	THERMODYNAMICS	3-1-0-4	2016

Prerequisite: nil

Course Objectives:

- 1. To understand basic thermodynamic principles and laws
- 2. To develop the skills to analyze and design thermodynamic systems

Syllabus

Basic concepts, zeroth law of thermodynamics and thermometry, energy, first law of thermodynamics, second law of thermodynamics, entropy, irreversibility and availability, third law of thermodynamics pure substances, equations of state, properties of gas mixtures, Introduction to ideal binary solutions, general thermodynamic relationships, combustion thermodynamics

Expected outcome: At the end of the course the students will be able to

- 1. Understand the laws of thermodynamics and their significance
- 2. Apply the principles of thermodynamics for the analysis of thermal systems

Text Books

- 1. P.K.Nag, Engineering Thermodynamics, McGraw Hill, 2013
- 2. E.Rathakrishnan Fundamentals of Engineering Thermodynamics, PHI,2005

References Books:

- 1 Y. A. Cengel and M. A.Boles, Thermodynamics an Engineering Approach, McGraw Hill, 2011
- 2 G.VanWylen, R.Sonntag and C.Borgnakke, Fundamentals of Classical Thermodynamics, John Wiley & Sons, 2012
- 3. Holman J.P, Thermodynamics, McGraw Hill, 2004
- 4. M.Achuthan, Engineering Thermodynamics, PHI,2004

Steam Tables/Data book

5. R.S.Khurmi, Steam table with Mollier chart, S.Chand, 2008

Module Contents Role of Thermodynamics in Engineering and Science Applications of Thermodynamics Basic Concepts - Macroscopic and Microscopic viewpoints, Concept of Continuum, Thermodynamic System and Control Volume, Surrounding, Boundaries, Types of Systems, Universe, Thermodynamic properties, Process, Cycle, Thermodynamic Equilibrium, Quasi - static Process, State, Point and Path function. (Review only- self study) Zeroth Law of Thermodynamics, Measurement of Temperature-Thermometry, reference Points, Temperature Scales, Ideal gas temperature scale, Comparison of thermometers-Gas Thermometers, Thermocouple, Resistance thermometer Energy - Work - Pdv work and other types of work transfer, free expansion work, heat and heat capacity. Joule's Experiment- First law of Thermodynamics - First law applied to Non flow Process. Enthalpy- specific heats- PMM1, First law applied to Non flow Process. And Energy balance in simple steady flow process. Applications of SFEE, Transient flow -Filling and Emptying Process. (Problems), Limitations of the First Law. FIRST INTERNAL EXAM Second Law of Thermodynamics, Thermal Reservoir, Heat Engine, Heat pump - Performance factors, Kelvin-Planck and Clausius Statements, Equivalence of two statements, Reversibility, Irreversible Process, Causes of Irreversibility, Corollaries of second law, PMM2, Carnot's theorem and its corollaries, Absolute Thermodynamic Temperature scale. Clausius Inequality, Entropy-Causes of Entropy Change, Entropy changes in various thermodynamic processes, principle of increase of entropy and its applications, Entropy generation in open and closed system, Entropy and Disorder, Reversible adiabatic process isentropic		
 Thermodynamics Basic Concepts - Macroscopic and Microscopic viewpoints, Concept of Continuum, Thermodynamic System and Control Volume, Surrounding, Boundaries, Types of Systems, Universe, Thermodynamic properties, Process, Cycle, Thermodynamic Equilibrium, Quasi – static Process, Process, Cycle, Thermodynamics, Measurement of Temperature-Thermometry, reference Points, Temperature Scales, Ideal gas temperature scale, Comparison of thermometers-Gas Thermometers, Thermocouple, Resistance thermometer Energy - Work - Pdv work and other types of work transfer, free expansion work, heat and heat capacity. Joule's Experiment- First law of Thermodynamics - First law applied to Non flow Process- Enthalpy- specific heats- PMM1, First law applied to Non flow Process, Mass and Energy balance in simple steady flow process. (Problems), Limitations of the First Law. FIRST INTERNAL EXAM Second Law of Thermodynamics, Thermal Reservoir, Heat Engine, Heat pump - Performance factors, Kelvin-Planck and Clausius Statements, Equivalence of two statements, Reversibility, Irreversible Process, Causes of Irreversibility, Corollaries of second law, PMM2, Carnot's theorem and its corollaries, Absolute Thermodynamic Temperature scale. Clausius Inequality, Entropy- Causes of Entropy Change, Entropy changes in various thermodynamic processes, principle of increase of entropy and its applications, Entropy generation in open and closed 	Hours	Sem. Exam Marks
expansion work, heat and heat capacity. Joule's Experiment- First law of Thermodynamics - First law applied to Non flow Process- Enthalpy- specific heats- PMM1, First law applied to Flow Process, Mass and Energy balance in simple steady flow process. Applications of SFEE, Transient flow –Filling and Emptying Process. (Problems), Limitations of the First Law. FIRST INTERNAL EXAM Second Law of Thermodynamics, Thermal Reservoir, Heat Engine, Heat pump - Performance factors, Kelvin-Planck and Clausius Statements, Equivalence of two statements, Reversibility, Irreversible Process, Causes of Irreversibility, Corollaries of second law, PMM2, Carnot's theorem and its corollaries, Absolute Thermodynamic Temperature scale. Clausius Inequality, Entropy- Causes of Entropy Change, Entropy changes in various thermodynamic processes, principle of increase of entropy and its applications, Entropy generation in open and closed	7	15%
 Second Law of Thermodynamics, Thermal Reservoir, Heat Engine, Heat pump - Performance factors, Kelvin-Planck and Clausius Statements, Equivalence of two statements, Reversibility, Irreversible Process, Causes of Irreversibility, Corollaries of second law, PMM2, Carnot's theorem and its corollaries, Absolute Thermodynamic Temperature scale. Clausius Inequality, Entropy- Causes of Entropy Change, Entropy changes in various thermodynamic processes, principle of increase of entropy and its applications, Entropy generation in open and closed 	0	15%
 pump - Performance factors, Kelvin-Planck and Clausius Statements, Equivalence of two statements, Reversibility, Irreversible Process, Causes of Irreversibility, Corollaries of second law, PMM2, Carnot's theorem and its corollaries, Absolute Thermodynamic Temperature scale. Clausius Inequality, Entropy- Causes of Entropy Change, Entropy changes in various thermodynamic processes, principle of increase of entropy and its applications, Entropy generation in open and closed 		
process	10	15%
 Available Energy, Availability and Irreversibility- Useful work, Dead state, Availability function, Availability and irreversibility in open and closed systems - Gouy-Stodola theorem, Third law of thermodynamics. Pure Substances, Phase Transformations, Triple point, properties during change of phase, T-v, p-v and p-T diagram of pure substance, p-v-T surface, Saturation pressure and Temperature, T-h and T-s diagrams, h-s diagrams or Mollier Charts, Dryness Fraction, steam tables. Property calculations using steam tables. 	10	15%

V	The ideal Gas Equation, Characteristic and Universal Gas constants, Deviations from ideal Gas Model: Equation of state of real substances- Vander Waals Equation of State, Berthelot, Dieterici, and Redlich-Kwong equations of state , Virial Expansion, Compressibility factor, Law of corresponding state, Compressibility charts Mixtures of ideal Gases – Mole Fraction, Mass fraction, Gravimetric and volumetric Analysis, Dalton's Law of partial pressure, Amagat's Laws of additive volumes, Gibbs-Dalton's law -Equivalent Gas constant and Molecular Weight, Properties of gas mixtures: Internal Energy, Enthalpy, specific heats and Entropy, Introduction to real gas mixtures- Kay's rule. *Introduction to ideal binary solutions, Definition of solution, ideal binary solutions and their characteristics, Deviation from ideality, Raoult's Law, Phase diagram, Lever rule(*in this section numerical problems not) General Thermodynamic Relations – Combined First and Second law equations – Helmholtz and Gibb's functions - Maxwell's Relations, Tds	11	20%
VI	Equations. The Clapeyron Equation, equations for internal energy, enthalpy and entropy, specific heats, Throttling process, Joule Thomson Coefficient, inversion curve. [#] Introduction to thermodynamics of chemically reacting systems, Combustion, Thermochemistry – Theoretical and Actual combustion processes- Definition and significance of equivalence ratio, enthalpy of formation , enthalpy of combustion and heating value ([#] in this section numerical problems not included)	10	20%

Total marks: 100, Time: 3 hrs

Approved steam tables permitted

The question paper should consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course No.	Course Name	L-T-P-Credits	Year of Introduction		
ME206	FLUID MACHINERY	2-1-0-3	2016		
Prerequisite: ME203 Mechanics of Fluids					

Course Objectives:

- 1. To acquire knowledge on hydraulic machines such as pumps and turbines
- 2. To understand the working of air compressors and do the analysis

Syllabus

Impact of jets, Hydraulic Turbines, Rotary motion of liquids, Rotodynamic pumps, Positive displacement pumps, , Compressors

Expected outcome: At the end of the course the students will be able to

- 1. Discuss the characteristics of centrifugal pump and reciprocating pumps
- 2. Calculate forces and work done by a jet on fixed or moving plate and curved plates
- 3. Know the working of turbines and select the type of turbine for an application.
- 4. Do the analysis of air compressors and select the suitable one for a specific application

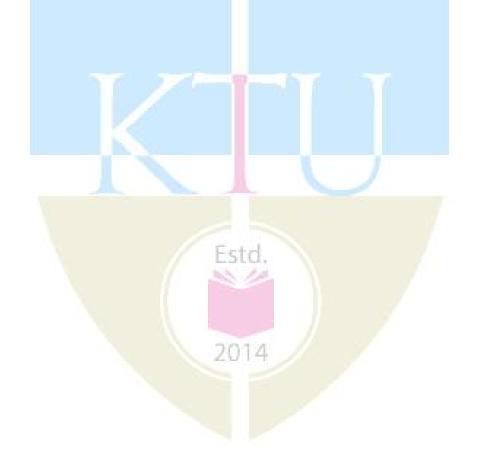
Text Books:

- 1. Som, Introduction to Fluid Mechanics and Fluid Machines ,McGraw Hill Education India 2011
- 2. Bansal R. K., A Textbook of Fluid Mechanics and Hydraulic Machines, Laxmi Publications, 2005.

Reference Books:

- 1. Cengel Y. A. and J. M. Cimbala, Fluid Mechanics, Tata McGraw Hill, 2013
- 2. Yahya S. M, Fans, Blower and Compressor, Tata McGraw Hill, 2005.
- 3. Shepherd D. G, Principles of Turbo Machinery, Macmillan, 1969.
- 4. Stepanoff A. J, Centrifugal and Axial Flow Pumps, John Wiley & Sons, 1991.
- 5. Rajput R. K, Fluid Mechanics and Hydraulic Machines, S. Chand & Co., 2006.
- 6. Subramanya, Fluid mechanics and hydraulic machines, 1e McGraw Hill Education India,2010

	Course Plan		
Module	Contents	Hours	Sem. Exam Marks
Ι	Impact of jets: Introduction to hydrodynamic thrust of jet on a fixed and moving surface (flat and curve),- Series of vanes - work done and efficiency Hydraulic Turbines : Impulse and Reaction Turbines - Degree of reaction - Pelton Wheel - Constructional features - Velocity triangles - Euler's equation - Speed ratio, jet ratio and work done, losses and efficiencies, design of Pelton wheel - Inward and outward flow reaction turbines- Francis Turbine - Constructional features - Velocity triangles, work done and efficiencies.	7	15%
II	Axial flow turbine (Kaplan) Constructional features – Velocity triangles- work done and efficiencies – Characteristic curves of turbines – theory of draft tubes – surge tanks – Cavitation in turbines – Governing of turbines – Specific speed of turbine , Type Number– Characteristic curves, scale Laws – Unit speed – Unit discharge and unit power.	7	15%
	FIRST INTERNAL EXAM		
III	Rotary motion of liquids – free, forced and spiral vortex flows Rotodynamic pumps- centrifugal pump impeller types,-velocity triangles-manometric head- work, efficiency and losses, H-Q characteristic, typical flow system characteristics, operating point of a pump. Cavitation in centrifugal pumps- NPSH required and available- Type number-Pumps in series and parallel operations. Performance characteristics- Specific speed-Shape numbers – Impeller shapes based on shape numbers.	7	15%
IV	Positive displacement pumps- reciprocating pump – Single acting and double acting- slip, negative slip and work required and efficiency- indicator diagram- acceleration head - effect of acceleration and friction on indicator diagram – speed calculation- Air vessels and their purposes, saving in work done to air vessels multi cylinder pumps. Multistage pumps-selection of pumps-pumping devices-hydraulic ram, Accumulator, Intensifier, Jet pumps, gear pumps, vane pump and lobe pump.	7	15%
	SECOND INTERNAL EXAM		
V	Compressors: classification of compressors, reciprocating compressor-single stage compressor, equation for work with and without clearance volume, efficiencies, multistage compressor, intercooler, free air delivered (FAD)	7	20%
VI	Centrifugal compressor-working, velocity diagram, work done, power required, width of blades of impeller and diffuser, isentropic efficiency, slip factor and pressure coefficient, surging and chocking. Axial flow compressors:- working, velocity diagram, degree of reaction, performance. Roots blower, vane compressor, screw compressor.	7	20%
	END SEMESTER EXAM		


Total marks: 100, Time: 3 hrs The question paper should consist of three parts **Part A** 4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course No.	Course Name	L-T-P-Credits	Year of Introduction			
ME210	METALLURGY AND MATERIALS ENGINEERING	3-0-0-3	2016			
Prerequisite: nil						
Course Objective	SIDI ADINI	L VAT /	N A			
• /-	undamental science relevant to mat	terials NALA	4.IVI			
	alline materials and defects of c					
	neat treatment of metals with mech					
	dents to be more aware of the beh		engineering applications			
	materials for various engineering a l the causes behind metal failure an					
	properties of unknown material		wareness to apply this			
	material design.	is and develop an e	wareness to apply this			
		C	1.00			
-	cal bonds – crystallography- imp atment – strengthening mechanism	•				
•	alloys- fatigue-creep- basics, ne					
engineering mater			approvident of mouth			
Expected outcom	ne: At the end of the course studen	ts will be able to				
-	ystal structures of metallic materia					
<u> </u>	inary phase diagrams of alloys Fe-I					
	microstructure with properties, pro-		nce of metals.			
-	failure of metals with structural ch	hange.				
	ls for design and construction.	م مع منابع معانية مربع معاملة	• •			
Text Books	ncepts in materials science to solve	e engineering problem	ns.			
	V, Material Science and Engineeri	ing. Prentice Hall.200)4			
	Mathew E V, Metallurgy and Ma					
Reference			1			
	J.C. et.al., Material Science for En					
	Varney, Physical metallurgy for En					
	E. Robert, Physical metallurgy printing to Physical Materia					
	Sidney, Intro <mark>duction to</mark> Physical Me Villiam. D., Material Science and E					
	orge E, Mechanical Metallurgy, Tat		lcy,2014			
8. Myers Marc and Krishna Kumar Chawla, Mechanical behavior of materials, Cambridge						
University press,2008						
	-Elements of Material Science - A	Addison Wesley,1989				
	l.ac.in/courses/113106032/1	ainlag of the	atallumar 2			
	w.myopencourses.com/subject/prin .mit.edu/courses/materials-science					
12. http://ocw		-and-engineering/3-0	7150-IIIII 0000011011-10-			

	Course Plan		
Module	ADIAR Contents II KALA	Hours	Semester Exam. Marks
Ι	Earlier and present development of atomic structure; attributes of ionization energy and conductivity, electronegativity and alloying; correlation of atomic radius to strength; electron configurations; electronic repulsion Primary bonds: - characteristics of covalent, ionic and metallic bond: attributes of bond energy, cohesive force, density, directional and non-directional and ductility. properties based on atomic bonding:- attributes of deeper energy well and shallow energy well to melting	AL 2	
	temperature, coefficient of thermal expansion - attributes of modulus of elasticity in metal cutting process -Secondary bonds:- classification- hydrogen bond and anomalous behavior of ice float on water, application- atomic mass unit and specific heat, application. <i>(brief review only, no University questions and internal assessment from these portions).</i> Crystallography:- Crystal, space lattice, unit cell- BCC,		15%
	FCC, HCP structures - short and long range order - effects of crystalline and amorphous structure on mechanical properties.	1	
	Coordination number and radius ratio; theoretical density; simple problems - Polymorphism and allotropy.	1	
	Miller Indices: - crystal plane and direction <i>(brief review)</i> - Attributes of miller indices for slip system, brittleness of BCC, HCP and ductility of FCC - Modes of plastic deformation: - Slip and twinning.	1	
	Schmid's law, equation, critical resolved shear stress, correlation of slip system with plastic deformation in metals and applications.	1	
	Mechanism of crystallization: Homogeneous and heterogeneous nuclei formation, under cooling, dendritic growth, grain boundary irregularity.	1	
II	Effects of grain size, grain size distribution, grain shape, grain orientation on dislocation/strength and creep resistance - Hall - Petch theory, simple problems	1	15%
	Classification of crystal imperfections: - types of dislocation – effect of point defects on mechanical properties - forest of	1	

	Burgers vector –dislocation source, significance of Frank Read source in metals deformation - Correlation of dislocation density with strength and nano concept, applications.	1	
	Significance high and low angle grain boundaries on dislocation – driving force for grain growth and applications during heat treatment.	AM	
	Polishing and etching to determine the microstructure and grain size.	AL	
	Fundamentals and crystal structure determination by X – ray diffraction, simple problems –SEM and TEM.	1	
	Diffusion in solids, Fick's laws, mechanisms, applications of diffusion in mechanical engineering, simple problems.	1	
	FIRST INTERNAL EXAMINATION		
	Phase diagrams: - Limitations of pure metals and need of alloying - classification of alloys, solid solutions, Hume Rothery's rule - equilibrium diagram of common types of binary systems: five types.	2	
	Coring - lever rule and Gibb's phase rule - Reactions: - monotectic, eutectic, eutectoid, peritectic, peritectoid.	1	
	Detailed discussion on Iron-Carbon equilibrium diagram with microstructure and properties changes in austenite, ledeburite, ferrite, cementite, special features of martensite transformation, bainite, spheroidite etc.	1	
III	Heat treatment: - Definition and necessity – TTT for a eutectoid iron–carbon alloy, CCT diagram, applications - annealing, normalizing, hardening, spheroidizing.	1	15%
	Tempering: - austermpering, martempering and ausforming - Comparative study on ductility and strength with structure of pearlite, bainite, spherodite, martensite, tempered martensite and ausforming.	1	
	Hardenability, Jominy end quench test, applications- Surface hardening methods:- no change in surface composition methods :- Flame, induction, laser and electron beam hardening processes- change in surface composition methods :carburizing and Nitriding; applications.	2	

	 Types of Strengthening mechanisms: - work hardening, equation - precipitation strengthening and over ageing-dispersion hardening. Cold working: Detailed discussion on strain hardening; recovery; re-rystallization, effect of stored energy; recrystallization temperature - hot working Bauschinger effect and attributes in metal forming. Alloy steels:- Effects of alloying elements on steel: dislocation movement, polymorphic transformation temperature, alpha and beta stabilizers, formation and stability of carbides, grain growth, displacement of the eutectoid point, retardation of the transformation rates, improvement in corrosion resistance, mechanical properties 	1 1 AM AL	15%
IV	Nickel steels, Chromium steels etc Enhancement of steel properties by adding alloying elements: - Molybdenum, Nickel, Chromium, Vanadium, Tungsten, Cobalt, Silicon, Copper and Lead. High speed steels:- Mo and W types, effect of different	1	
	alloying elements in HSS Cast irons: Classifications; grey, white, malleable and spheroidal graphite cast iron etc, composition, microstructure, properties and applications.	1	15%
	Principal Non ferrous Alloys: - Aluminum, Copper, Magnesium, Nickel, study of composition, properties, applications, reference shall be made to the phase diagrams whenever necessary.	1	
	SECOND INTERNAL EXAMINATION		
	Fatigue: - Stress cycles – Primary and secondary stress raisers - Characteristics of fatigue failure, fatigue tests, S-N curve.	1	
V	Factors affecting fatigue strength: stress concentration, size effect, surface roughness, change in surface properties, surface residual stress.	1	
	Ways to improve fatigue life – effect of temperature on fatigue, thermal fatigue and its applications in metal cutting	1	20%
	Fracture: – Brittle and ductile fracture – Griffith theory of brittle fracture – Stress concentration, stress raiser – Effect of plastic deformation on crack propagation.	1	
	transgranular, intergranular fracture - Effect of impact loading on ductile material and its application in forging, applications - Mechanism of fatigue failure.	1	

	Structural features of fatigue: - crack initiation, growth, propagation - Fracture toughness (definition only) - Ductile to brittle transition temperature (DBTT) in steels and structural changes during DBTT, applications.	
V1	Creep: - Creep curves - creep tests - Structural change:- deformation by slip, sub-grain formation, grain boundary sliding1Mechanism of creep deformation - threshold for creep, prevention against creep - Super plasticity: need and applications1Composites:- Need of development of composites - geometrical and spatial Characteristics of particles - classification - fiber phase: - characteristics, classifications - matrix phase:- functions - only need and characteristics of PMC, MMC, and CMC - applications of composites: aircraft applications, aerospace equipment and instrument 	20%
	Modern engineering materials: - only fundamentals, need, properties and applications of, intermetallics, maraging steel, super alloys, Titanium – introduction to nuclear materials, smart materials and bio materials.	
	$\begin{array}{c} \text{Ceramics:-coordination number and radius ratios- AX,} \\ A_m X_p, A_m B_m X_p \text{ type structures } - \text{ applications.} \end{array} \right. 1$	

sto

Total marks: 100, Time: 3 hrs

The question paper should consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code	Course Name	L-T-P- Credits	Year of Introduction		
ME216	MECHANICAL TECHNOLOGY	4-0-0-4	2016		
Prerequisite : N	Nil				
Course Objecti	ive				
The main object	ctives of this course are	エクルエ	A A 4		
• To	make the students aware of the area of he	eat transfer and a	allied fields.		
	• To give students knowledge of mechanical power generation devices and its applications				
 To impart knowledge of low temperature and its applications. 					
 To analyse the aspects of engineering problems solvable by applying the subject. 					

Syllabus

Heat transfer - Field of application- Modes of heat transfer- conduction, convection and radiation. Combined conduction and convection. Buckingham's Pi theorem and its application. Heat exchangers- Parallel flow and counter flow heat exchangers - I C Engines- mean effective pressure– Brake power, Indicated power, efficiencies. Performance test- Morse test – Retardation test – Heat balance test. Gas turbine – open and closed cycles – thermodynamics cycles. Compressors - Classifications- reciprocating compressor- Introduction to Rotary compressors, Roots blowers and vane compressors. Principles of refrigeration-unit of refrigeration- Vapour compression system, Vapour Absorption refrigeration. Air conditioning – Psychrometry-Summer and Winter Air conditioning Window type Air conditioning system

Expected Outcome

After successful completion of the course, the student will be able to

- (i) identify heat transfer equipment and the theory behind them.
- (ii) understand working principles and performances of IC engines, which leads him to know more about automobiles and to search for improved performances.
- (iii) understand the working of different type of compressors.
- (iv) know the principles and working of refrigerators and air conditioning equipments.

References

- 1. Rajput R K, Heat and Mass Transfer, S. Chand publishing., 2015.,
- 2. Eastop T. D. and A. McConkay, Applied Thermodynamics, Pearson Education, 5th Ed

/014

- 3. Thermal Engineering, Ballaney P. L., Khanna publishers, 1994.
- 4. Arora C. P., Refrigeration and Air conditioning, Tata McGraw Hill, 2000
- 5. Sachdeva R. C., Fundamentals of Engineering Heat and Mass Transfer, New Age Science Ltd., 2009.
- 6. Rajput R. K., Thermal Engineering, Laxmi Publications, 2010.

	Course Plan		
Module	Contents	Hours	Sem. exam marks
Ι	Heat transfer - Field of application- Modes of heat transfer- Conduction- Fourier law of heat conduction, heat flux and thermal conductivity-Factors affecting conductivity- General Heat Conduction Equation in Cartesian Coordinate- thermal diffusivity, One-dimensional steady state conduction through plane walls, hollow cylinders, hollow spheres and their composites with constant conductivity- thermal resistance and equivalent thermal resistance. Transient heat conduction- lumped heat capacity method. Critical radius of insulation and its significance	M J_	15%
П	Convection - classification-Newton law of cooling, heat transfer coefficient, laminar and turbulent flow. Dimensionless numbers and its significance. Buckingham's Pi theorem and its application to Natural and forced convection heat transfer. Combined conduction and convection-overall heat transfer coefficient, Critical radius of insulation and its significances. Heat exchangers - Classifications- temperatures variation in Parallel flow, counter flow HE- Analysis of Heat Exchangers – Derivation of LMTD and simple problems with NTU method.	6	15%
	First Internal Exam	11	
III	Radiation heat transfer - Basic theory of radiation-Spectrum of electromagnetic radiation, Reflection, Absorption and Transmission of radiation - absorptivity, reflectivity and transmissivity-Monochromatic radiation-Laws of radiations- Stefan Boltzman law, Planck's law, Kirchoff's law and Wien's displacement law, Total emissive power Black body, Grey body and emissivity Heat exchange between non black bodies- surface and shape resistances- electrical network analogy- heat transfer between parallel surfaces – radiation shields. Simple problems	4	15%
IV	I C Engines – Classification - two-stroke and four stroke engines(Working), theoretical and actual working cycles– SI and CI engines – mean effective pressure– Brake power, Indicated power, efficiencies. Performance test- Morse test – Retardation test – Heat balance test. Combustion phenomena in SI and CI engines- detonation, knocking and alternate fuels.	5	15%

Second Internal Exam			
V	Gas turbine – open and closed cycles – thermodynamics cycles – regeneration – reheating – intercooling – efficiency and performance of gas turbines . Compressors – Classifications- reciprocating compressor-p-v	4	2004
V	diagram, work done, effect of Clearance, efficiencies, volumetric efficiency and free air delivered (FAD), two stage compressions, optimum pressure ratio, effect of intercooling. Introduction to rotary compressors, Roots blowers and vane compressors	4	20%
	Principles of refrigeration-unit of refrigeration - capacity - Coefficient of Performance – reversed Carnot cycle, Bell-		
	Coleman cycle-Vapour compression system-thermodynamic analysis on T-S diagram and p-h diagram-refrigerants - thermodynamic, physical and chemical properties of refrigerants - selection criteria of refrigerants –designation of refrigerants, eco friendly refrigerants	5	
VI	Vapour Absorption refrigeration – Layout Ammonia –water system and Electrolux system. Air conditioning – Psychrometry - basic definitions, psychometric chart, psychometric processes - human comfort - comfort chart and limitations (brief discussion	4	20%
	only) Summer and Winter Air conditioning Window type Air conditioning system		
	End Semester Exam		

Max. marks: 100, Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)


Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course No.	Course Name	L-T-P-Credits	Year of Introduction				
ME220	MANUFACTURING TECHNOLOGY	3-0-0-3	2016				
Prerequisite:	Prerequisite: Nil						
 To give a To provid To famili To give a To introd allied ma 	 To provide an exposure to different rolling processes and different rolled products To familiarize with different forging methods, cautions to be adopted in die design. To give an introduction to various work and tool holding devices used in manufacturing. To introduce to the bending, shearing and drawing processes of sheet metal working and allied machines, 						
SYLLABUS	ing teeninques.						
Rolled parts- Extrusion Def of Clamp -Sh Weldability –	erns - Cores – Gating – Risering – Defect forging – Coining – Heading – Piercing fects – Drawing Process -Principles of Loca neet metal characteristics –Deep drawing – Solidification of Weld Metal – Heat Affect Welding - Ultrasonic Welding – Friction ering.	g –Die Design– Ext tion–Principles of C –Spinning –Definitio ected Zone – Weldin	trusion Process- lamping – Types on of Welding – ng Defects - Gas				
 Acquire ki Understan Discuss in Discuss si products. 	 Expected outcomes: At the end of the course the students will be able to 1. Acquire knowledge in various casting processes and technology related to them. 2. Understand the rolling passes required for getting required shapes of rolled products. 3. Discuss important aspects of forging techniques 4. Discuss sheet metal working processes and their applications to produce various shapes and products. 5. Acquire knowledge in various types of welding processes. 						
Testheshar							
West I 2. S.Kalp Pearso Reference bo 1. RAO, 2. RAO, 3. Cyril 4. Handl	oks:- Manufacturing Technology-Vol 2 3e, McGr Manutacturing Technology-Vol 1 4e, McGr Donaldson and George H LeCain, Tool Desi pook of Fixture Design – ASTME	g Engineering and Te aw Hill Education Ind aw Hill Education Ind ign,TMH	echnology, dia, 2013 dia, 2013				
Hill, Ì	bell J. S., Principles of Manufacturing Mater 999 eeley, Foundry Technology, Elsevier, 2001	nals and Processes, T	ata McGraw				

- 6. P R Beeley, Foundry Technology, Elsevier, 2001
- 7. Richard W. Heine, Carl R. Loper, Philip C. Rosenthal, Principles of Metal Casting,

- Tata McGraw-Hill Education, 2001
- 8. Paul Degarma E and Ronald A. Kosher ,Materials and Processes in Manufacturing, Wiley,20111
- 9. P. N. Rao, Manufacturing Technology Foundry, Forming and Welding, Tata McGraw-Hill Education, 2011
- 10. HMT Production Technology, 1e McGraw Hill,2001

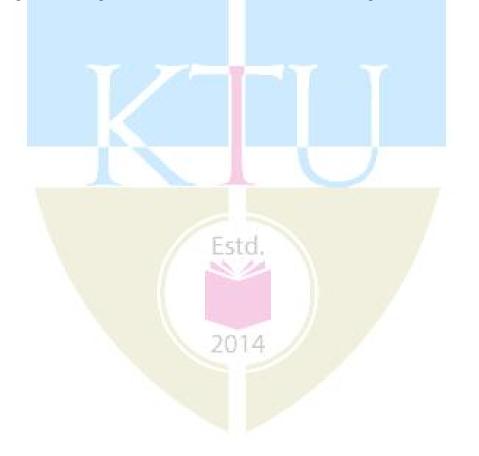
	Course Plan		
Module	Contents	Hours	Semester Examination Marks
	Sand Casting – Sand Molds-Types of Molding Sands and Testing	1	
	Type of patterns - Pattern Materials	1	
	Cores –Types and applications –Sand Molding Machines	1	
I	Gating System – Risering	1	15%
1	Shell Mold Casting – Ceramic Mold Casting	1	1570
	Investment Casting – Vacuum Casting – Slush Casting	1	
	Pressure Casting – Die Casting – Centrifugal Casting	1	
	Design Considerations based on Various Shapes - Defects in Castings – simple problems in casting	1	
	Principles of Rolling –Types of rolling mills, Mechanics of Flat Rolling	1	
	Roll Force and Power Requirement - Neutral Point	1	15%
п	Hot and Cold Rolling	1	
	Defects in Rolled Plates - Rolling Mills	1	
	Ring Rolling – Thread Rolling	1	
	Applications- Rolling of tubes, wheels, axles and I-beams	1	
	FIRST INTERNAL EXAM		
III	Classification of forging – Forging methods – Forging under sticking condition	1	
	Precision Forging – Coining – Heading – Piercing	1	
	Die Design:- Preshaping, Design Features, Draft Angles – Die Materials and Lubrication	1	15%
	Forging Machines – Forging Defects and tests	1	
	Extrusion Process - Hot Extrusion – Cold Extrusion	1	
	Impact Extrusion – Extrusion Defects – Drawing Process, wire drawing process	1	

IV	Principles Location - Degrees of Freedom, 3-2-1 principle of locating	1	
	Locating from Planes - Locating from Circular Surfaces	1	
	Concentric Locating - Principles of Clamping	1	15%
	Types of Clamps - Strap Clamps Slide Clamps - Swing Clamps - Hinge Clamps	1	
	Vacuum Clamping - Magnetic Clamping	1	
	SECOND INTERNAL EXAM		
	Sheet metal characteristics – Typical shearing	1	
	Bending Sheet and Plate – Spingback - Bending Force	1	
	Press Brake Forming - Tube Bending	1	
	Stretch Forming - Deep Drawing	1	
V	Rubber forming - Spinning Shear Spinning - Tube Spinning	1	20%
	Definition of Welding - Weldability – Solidification of the Weld Metal	1	
	Heat Affected Zone – correlation of strength of welded joint with structure - Welding Defects	1	
	Gas Welding: – Flame Characteristics	1	
	Equipment, fluxes and filler rods	1	
	Arc Welding – Applications and Equipment	1	
	Electrodes	1	
VI	Shielded Metal Arc Welding – Submerged Arc Welding	1	20%
VI	GTAW – Plasma Arc Welding	1	20%
	Ultrasonic Welding – Friction Welding	1	
	Resistance Spot Welding	1	
	Resistance Seam Welding – Stud Welding – Percussion Welding - simple problems in welding	1	
	Brazing:- Filler Metals, Methods - Soldering:- Techniques, Types of Solders and Fluxes	1	
	END SEMESTER EXAM		

Total marks: 100, Time: 3 hrs

The question paper should consist of three parts

Part A


4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course No.	Course Name	L-T-P- Credits	Year of Introduction			
ME230	FLUID MECHANICS AND					
	MACHINES LABORATORY	0-0-3-1	2016			
Prerequisite: ME2	Prerequisite: ME203 Mechanics of fluids					
Course Objectives	: The main objectives of this course is to dem	onstrate the app	lications of theories			
of basic fluid med	chanics and hydraulic machines and to provi	de a more intu	itive and physical			
understanding of the	theory.	RIC/	1			
Syllabus			h. hard			
Study:		Y				
-	easuring equipments - water meters, venturi m	eter, orifice me	ter, current meter,			
rotameter						
	- pressure gauge, vacuum gauge, manometers.					
	- stop valve, gate valve and foot valve.					
	- Centrifugal, Reciprocating, Rotary, Jet.					
	es - Impulse and reaction types.					
• •	lic ram, accumulator etc.					
List of Experiment						
	of coefficient of discharge and calibration of 1					
	of coefficient of discharge and calibration of C					
	of coefficient of discharge and calibration of V					
	of Chezy's constant and Darcy's coefficient on	pipe friction a	pparatus			
	of hydraulic coefficients of orifices	a				
	of metacentric height and radius of gyration of	floating bodies				
7. Experiments on	-					
8. Reynolds exper						
-	9. Bernoulli's experiment					
10.Experiment on T						
	st on positive displacement pumps					
	st on centrifugal pumps, determination of operation	ating point and	efficiency			
13. Performance tes	st on Impulse turbines					
	-	rhines)				
15. Performance test on reaction turbines (Francis and Kaplan Turbines)						
16. Speed variation test on Impulse turbine 17. Determination of best guide vane opening for Reaction turbine						
18. Impact of jet						
	nents are mandatory					
-	ome: At the end of the course the students will		,			
	ical basis of Bernoulli's equation, and apply i	t in flow meas	urement (orifice,			
Nozzle and Venturi meter), and to a variety of problems						
2. Determine the efficiency and plot the characteristic curves of different types of pumps and						
turbines.						

Course No.	Course Name	L-T-P-Credits	Year of Introduction
ME231	COMPUTER AIDED MACHINE DRAWING LAB	0-0-3-1	2016
Course Objective	s:		
components. 2. To teach studer 3. To familiarize s	idents to the basics and standards of enginee its technical skills regarding assembly, pro- students with various limits, fits and tolerance is gain knowledge about standard CAD packa	duction and part drav	wings.
Syllabus			
Introduction to Ma	chine Drawing, Drawing Standards, Fits, T D, assembly drawings, etc.	Colerances, Productio	on drawings.
 Ability to select Apply the know Able to model of 	of assemblies with the help of part drawings t, configure and synthesize mechanical comp vledge of fits and tolerances for various appli- components of their choice using CAD softw o advanced CAD packages.	onents into assemblie cations.	νs.
 K C John, M P I Varghees K.L.Narayan Ajeet Singh 	and V.M. Panchal, Machine Drawing, Ch Machine Drawing, PHI,2009 se and K C John, Machine Drawing, VIP Pu na, P.Kannaiah & K. Venkata Reddy,Machi Machine Drawing Includes AutoCAD, Tat achine Drawing, Kataria & Sons,2009	ublishers ,2011 ne Drawing, New A	ge Publishers, 2009
	2014		

	Course Plan	
Module	Contents	
0	Introduction Principles of drawing, free hand sketching, manual drawing, CAD drawing etc.	
I	Drawing standards: 2 exercises Code of practice for Engineering Drawing, BIS specifications – lines, types of lines, dimensioning, sectional views, Welding symbols, riveted joints, keys, fasteners –bolts, nuts, screws, keys etc.	05
п	Fits ,Tolerances and Surface Roughness: 2 exercises Limits, Fits – Tolerances of individual dimensions – Specification of Fits – basic principles of geometric & dimensional tolerances. Preparation of production drawings and reading of part and assembly drawings, surface roughness, indication of surface roughness, etc.	06
	FIRST INTERNAL EXAM	
III	Introduction to drafting package: Introduction, input, output devices, introduction to drafting software like Auto CAD, basic commands and development of simple 2D and 3D drawings. Drawing, Editing, Dimensioning, Plotting Commands, Layering Concepts, Matching, Detailing, Detailed drawings.	06
	Assembly drawings(2D): 10 exercises Preparation of assembled views. (Manually): Shaft couplings – Connecting rod - Machine Vice – Stuffing box – Plummer block. (Using software package, 2D Drawing) :– Universal joint - Screw jack – Lathe Tailstock – Rams Bottom Safety Valve – Steam stop valve. Preparation of Bill of materials and tolerance data sheet.	24
	SECOND INTERNAL EXAM	
	0% of assembly drawings (Module IV) must be done manually and remaining y drawings must be done using any 2D drafting package.	50% of

FINAL INTERNAL EXAM

Examination scheme

- (1) End semester examination shall be for 30 marks and of 2 hours duration.
- (2) End semester exam shall be based on Module IV. It shall be conducted as a CAD examination
- (3) 50 marks are allotted for internal evaluation: first internal exam 25 marks, second internal exam 25 marks and class exercises 20 marks.
- (4) The first internal exam will be based on modules I and II and the second internal exam will be a based on Module IV alone. (Both will be conducted as manual drawing examinations)

Course No.	Course Name	L-T-P-Credits	Year of Introduction
ME232	THERMAL ENGINEERING LABORATORY	0-0-3-1	2016
Prerequisite : Sho	ould have registered for ME204 Thermal	l Engineering	
Course Objectives		* * * * * * *	
2. To conduct the	various types IC engines and their parts ne performance test on IC engines, comp e equipment used for measuring viscosit oducts		nd Calorific value of
Syllabus	UNIVER'	VIIY	
List of experiments		24 4 A	
Study of I.C engine			
,	ngines - all systems and parts		
/	ngines - all systems and parts		
Experiments		1 . 0 1 10	
	n of flash and fire points of petroleum p		ooint apparatus
	n of viscosity of lubricating oil- viscome		
	n of calorific value of solid and liquid f n of calorific value of and gaseous fuels		
	test on petrol engines with various types		
	test on Diesel engines with various types		
	test on petrol/Diesel engines	es of fodding systems	
8. Cooling curv			
	diagram of IC engines		
	eed test on IC engines		
	est on IC engines		
12. Determinatio	n volumetric efficiency and Air-fuel rati	io of IC engines	
13. Morse test or			
	test on reciprocating compressor		
	test on rotary compressor/blower		
	y profile in a pipe flow using Prandtl -P		
•	utomobile exhaust gas and flue gas usin	g exhaust gas analyser	
ote: 12 experiments			
-	: At the end of the course the students w		.
1. Determine th engines, com	e efficiency and plot the characteristic c	urves of different types	of Internal Combustion
•	eriments for the determination of viscosi		

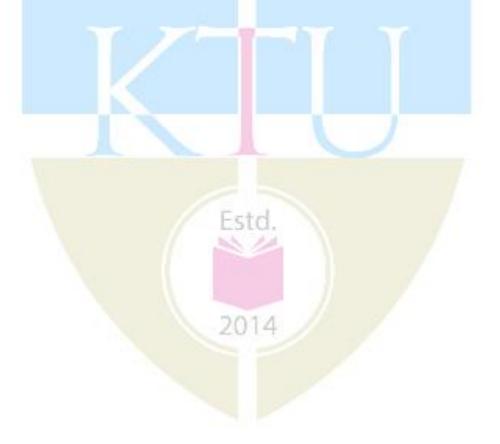
Cour Numb	Course Name	L -T-P- Credits	Year of I	ntroduction
ME20	0 Fluid mechanics and Machinery 3	8-1-0-4	2	016
Prerequi				
Course (bjectives:			
 To <	introduce students, the fundamental concepts related understand the basic principles of fluid machines ar apply acquired knowledge on real life problems. analyze existing fluid systems and design new fluid mental Concepts, fluid statics and dynamics, fluid ki turbines, positive displacement pumps, rotary motion levices. Outcome npletion of course the students might be in a position halyze flow problems associated with statics, kinemate sign and analyze fluid devices such as water turbines neederstand and rectify problems faced in practical case	nd devices systems. nematics, of liquid to: ics and pum s of engin Mechanic	boundary la boundary la s, centrifuga ynamics of f ps. heering appl s, S.B.H Pul	ayer theory, al pump, fluids. ications.
 Cengel Robert K. Sub Shame Jagadis 	es: buglas, "Fluid Mechanics", Pearson education. Y. A. and J. M. Cimbala, Fluid Mechanics, Tata McC W. Fox and Mc Donald, "Introduction to fluid dynam rahmanya, "Theory and applications of fluid mechani a. I. H, "Mechanics of fluids". h Lal, "Fluid mechanics and Hydraulic machines". nsal, "Hydraulic Machines"	nics", Joh	<mark>n Wile</mark> y and	sons
	Course Plan	1		
Module	Contents		Hours	Sem. exam marks
Ι	Fundamental concepts: Properties of fluid - densitive weight, viscosity, surface tension, capillarity, vapour bulk modulus, compressibility, velocity, rate of sh Newton's law of viscosity, Newtonian and non- fluids, real and ideal fluids, incompressible and co fluids.	ir pressure near strain Newtonia	e, 1, n 6	15%

II	Fluid statics: Atmospheric pressure, gauge pressure and absolute pressure. Pascal's Law, measurement of pressure - piezo meter, manometers, pressure gauges, energies in flowing fluid, head - pressure, dynamic, static and total head, forces on planar and curved surfaces immersed in fluids, centre of pressure, buoyancy, equilibrium of floating bodies, metacentre and metacentric height.	10	15%	
	First Internal Exam	IVI		
III	Fluid kinematics and dynamics: Classification of flow -1D, 2D and 3D flow, steady, unsteady, uniform, non-uniform, rotational, irrotational, laminar and turbulent flow, path line, streak line and stream line. Continuity equation, Euler's equation, Bernoulli's equation. Reynolds experiment, Reynold's number. Hagen- Poiseuille equation, head loss due to friction, friction, Darcy- Weisbach	AL 8	15%	
	equation, Chezy's formula, compounding pipes, branching of pipes, siphon effect, water hammer transmission of power through pipes (simple problems)			
IV	Boundary layer theory: Basic concepts, laminar and turbulent boundary layer, displacement, momentum, energy thickness, drag and lift, separation of boundary layer. Flow rate measurements- venturi and orifice meters, notches and weirs (description only for notches, weirs and meters), practical applications, velocity measurements- Pitot tube and Pitot –static tube.	10	15%	
Second Internal Exam				
	Hydraulic turbines : Impact of jets on vanes - flat, curved,			
V	stationary and moving vanes - radial flow over vanes. Impulse and Reaction Turbines – Pelton Wheel constructional features - speed ratio, jet ratio & work done, losses and efficiencies, inward and outward flow reaction turbines- Francis turbine constructional features, work done and efficiencies – axial flow turbine (Kaplan) constructional features, work done and efficiencies, draft tubes, surge tanks, cavitation in turbines.	10	20%	
VI	 Positive displacement pumps: reciprocating pump, indicator diagram, air vessels and their purposes, slip, negative slip and work required and efficiency, effect of acceleration and friction on indicator diagram (no derivations), multi cylinder pumps. Rotary motion of liquids: – free, forced and spiral vortex flows, (no derivations), centrifugal pump, working principle, impeller, casings, manometric head, work, efficiency and losses, priming, specific speed, multistage pumps, selection of pumps, pump characteristics. 	10	20%	
	End Semester Exam			

Max. marks: 100, Time: 3 hrs

The question paper should consist of three parts

Part A


4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course c	code	Course Name	L-T-P - Credit		Year of troduction	
ME20)7	THERMAL ENGINEERING-I	3-1-0-4		2016	
Prerequi	site : I					
Course C						
•	• To impart the basic knowledge of the properties of steam and its application.					
•	Το ø	ive knowledge on the analysis of air comp	ressors and gas tur	bines		
•		rovide ideas on modes of heat transfer and				
Gullahua	10 p	Tovide ideas on modes of near transfer and	i neat transfer equa			
Syllabus Review of	f Ther	modynamic laws and corollaries- Thermoo	dynamic relations	Steam En	aineerina_	
		steam boilers, steam nozzle, steam turbine				
	-	quations – laws of radiation heat transfer	s m compressors	Gus turoi	nes meat	
transier	iute e	quations have of radiation near transfer.	ITV			
Expecte	d outo	come .	111			
-		the course the students will be able to				
		te the concepts, laws and methodologies o	of thermodynamics	in		
		lysis of cyclic processes				
		the thermodynamic concepts in applicatio	ns like Steam T	urbines, C	ompressors,	
(Jas tur	bines.				
Text Bo	oke					
		how on the Thermol Engineering McCru	w Hill Education	India 20	02	
1.		ramoorthy, Thermal Engineering, McGra		i muia,20	05	
2.		Rajput, Thermal Engineering, Laxmi pub			10	
3.		hore, Thermal Engineering 1e, McGrav		India, 20	10	
4.	Bal	laney P.L, Thermal Engg, Khanna Publ	lishers, 2007			
Data Bo	nok (A	Approved for use in the examination): St	eam Tables			
Referen		ipproved for use in the examination), st		_		
		n WJ, Steam turbines theory and practice-	A text book for en	gineering	students.	
		bhanes press, 2011		0 0	,	
2. 0	Cohen,	Rogers and Saravanamuttoo, Gas turbine	Theory, Longman,	1996.		
3. N	Nag P	K, Thermodynamics, Tata McGrawhill, 20)11			
		Course Plan	n			
Module		Contents		Hours	Sem. Exam Marks	
	Rev	view of thermodynamic laws and coroll	aries: Transient			
Ι		analysis, second law of thermodynamic				
1	and	unavailability. Thermodynamic relations.	1			
				8	15%	
		am engineering- Entropy of ste <mark>am,</mark> temp				
	U	· · · · · · · · · · · · · · · · · · ·	ankine cycle,			
II	-	rovement in steam cycles, binary vapou	ır cycle, Steam			
	conc	lensers.				
				8	15%	
	C.	FIRST INTERNAL EXAM				
III		am boilers- Working of high pressure boil		10	150/	
	W1lC	cox boiler, Benson boiler. Steam turbines	– amerent types,	10	15%	

	velocity diagrams, condition for maximum efficiency, Cycles with reheating and regenerative heating. Steam nozzle- Flow through steam nozzles, super saturated flows.		
IV	Compressors- reciprocating air compressors- work done and efficiency, volumetric efficiency, effect of clearance, Rotary compressors, centrifugal and axial compressors.	10	15%
	SECOND INTERNAL EXAMINATION	A	I
V	Gas turbines-open and closed cycles. Ideal gas turbine cycle, compressor and turbine efficiencies, simple cycle with regeneration, intercooling and reheating.	10	20%
VI	Heat transfer- Different modes of heat transfer, Derivation of heat transfer equations for all modes of heat transfer (Fourier law, Newtons law of cooling, Planck's law, Kirchoff's law, Wiens displacement law and Stefan Boltzmanns law)- Simple problems.	10	20%
	END SEMESTER EXAM		

Maximum marks: 100

Time: 3 hours

The question paper should consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code	Course Name	L-T-P - Credits	Year of
ME209	MECHANICAL PROPERTIES OF	3-1-0-4	Introduction 2016
	STRUCTURAL MATERIALS		
Prerequisite :	Nil		
Course Object	tives		
 To kno 	w about different materials, their structure	and property relationsl	nips
strengthTo ena applicat	dy about crystalline and amorphous nening mechanisms, alloying, phase diagra ble students to understand about the ions and select the materials for various er erstand the causes behind fracture and various	ms and heat treatment behavior of materials ngineering applications.	of metals for engineering
• 10 unde	erstand the causes bennid fracture and vari	ous failure mechanisms	b
		Y	
Syllabus:	OTATYLING	1 1 1	
creep- crystalli	y- imperfections- Mechanical properties- zation- diffusion- phase diagrams- heat tre ng –ferrous and non ferrous alloys.	-	
ii. acqu iii. kno met iv. stud	erstand crystal structure and various imper uire a knowledge about alloying and phase w the relationship between structure, pro	diagrams operties, processing an misms in structural com	-
v. De a	one to select materials for specific applicat	10115.	
Text Books	5:		
	Raghavan V, Material Science and Eng	gineering, Prentice Hall	,2004
	 Avner H Sidney, Introduction to Physic Callister William. D., Material Science Dieter George E, Mechanical Metallury Higgins R.A Engineering Metallurgy Myers Marc and Krishna Kumar Cha 	e and Engineering, John gy, Tata McGraw Hill, 7 part - I – ELBS,1998	n Wiley,2014 1976
	Cambridge University press,2008	awia, Mechanical dena	wior or materials,
	6. Van Vlack -Elements of Material Scien	nce - Addison Wesley.1	989
	7. Askland and Phule- The Science an publishers, 2007		
	8. Anderson J.C. <i>et.al.</i> , Material Science	for Engineers, Chapma	n and Hall,1990
	 Clark and Varney, Physical metallurgy Reed Hill E. Robert, Physical me Learning, 2009 	0	
	11. <u>http://nptel.ac.in/courses/113106032/1</u>		
	12. http://www.myopencourses.com/subjection 13. http://ocw.mit.edu/courses/materials-science/internationality/ocw.mit.edu/courses/materials-science/internationality/ocw.mit.edu/courses/materials-science/internationality/ocw.mit.edu/courses/materials-science/internationality/ocw.mit.edu/courses/materials-science/internationality/ocw.mit.edu/courses/materials-science/internationality/ocw.mit.edu/courses/materials-science/internationality/ocw.mit.edu/courses/materials-science/internationality/ocw.mit.edu/courses/materials-science/internationality/ocw.mit.edu/courses/materials-science/internationality/ocw.mit.edu/courses/materials-science/internationality/ocw.mit.edu/courses/materials-science/internationality/ocw.mit.edu/courses/materials-science/internationality/ocw.mit.edu/courses/materials-science/internationality/ocw.mit.edu/courses/materials-science/internationality/ocw.mit.edu/courses/materiality/courses/materiality/courses/materiality/courses/materiality/courses/materiality/courses/materiality/courses/materiality/courses/materiality/courses/materiality/courses/materi	cience-and-engineering	
	introduction-to-solid-state-chemistry-fi	•	
	14. <u>http://www.msm.cam.ac.uk/teaching/pa</u>	aruA.pnp	

Course Plan					
Module	Contents	Hours	Sem. Exam Marks		
Ι	 Introduction: Material science. Materials ad types of materials: metals, polymers, ceramics, composites, and electronic materials. Crystal structures and geometry: Crystal lattices and the unit cell. Principal metallic crystal structures: the body-centered cubic, the face-centered cubic, and the hexagonal close-packed structures. Miller's indices of planes and directions in the cubic system. Atomic packing. Density calculation. Planar and linear atomic densities. Polymorphism. Crystal imperfections: Point defects, solid solutions, vacancies and interstitialcies, line defects (dislocations), Burger's vector, edge and screw dislocations. Grain boundaries and grain size. 	9	15%		
II	 Stresses, strains and Mechanical testing: Normal and shear stresses. Elastic and plastic deformation. The tensile test and the engineering stress-strain diagrams. Young's modulus, the yield strength, the ultimate tensile strength, the percent elongation and percent reduction in area. True stress and true strain. Compression testing, Hardness and hardness testing. Plastic deformation in single crystals. The slip mechanism and dislocations. Slip systems and the critical resolved shear stress. Schmidt's law. Twinning. Effects of plastic deformation on the microstructure and mechanical properties of metals. Cold work and strain hardening. Mechanism of crystallization: Homogeneous and heterogeneous nuclei formation, under cooling, dendritic growth, grain boundary irregularity. Effects of grain size, grain size distribution, grain shape, grain orientation on dislocation/strength and creep resistance - Hall - Petch theory, simple problems. 	9	15%		
	FIRST INTERNAL EXAMINATION				
III	 Strengthening by solid solutions, cold-working. Recovery, recrystallization and grain growth. Fracture of metals. Ductile and brittle fracture. Toughness and impact testing. Fracture toughness. Ductile to brittle transition temperature (DBTT) in steels and structural changes during DBTT. Fatigue of metals. The S/N diagram. Mechanisms of fatigue. Stress raisers and stress concentration. Initiation and growth of fatigue cracks. Factors affecting fatigue behavior of metals. Creep and stress rupture in metals. Stages of creep. Effect of stress and temperature on creep behavior. Creep mechanisms, The Larsen-Miller parameter. Stress relaxation. 	9	15%		

	Diffusion : Atomic diffusion and diffusion mechanisms. Substitutional and interstitial diffusion. Steady state diffusion and Fick's first law. Transient diffusion and Fick's second law. Effect of temperature on diffusion rate. Industrial applications of diffusion.		
IV	 Phase diagrams of pure substances (Unary systems). Gibb's phase rule of heterogeneous equilibrium. Binary Systems: Systems with unlimited solid solubility (isomorphous). The lever rule. Binary eutectic systems with no solid solubility and eutectic systems with limited solid solubility. Systems with compound and intermediate phases. Systems with peritectics. The invariant reactions, eutectics (and eutectoids) and peritectics (and peritectoids). Applications to typical binary phase diagrams. Copper-Zinc diagram and the Aluminum-Copper diagram. The Iron-iron carbide equilibrium diagram 	M L11	15%
	SECOND INTERNAL EXAMINATION		
V	Heat treatment of eutectoid steel: The eutectoid reaction in the iron-iron carbide system. The isothermal decomposition of austenite. The T.T.T. diagram. Formation pearlite and bainite. Decomposition of austenite on continuous cooling. Formation of martensite and the martensite lines. The structure of martensite. Annealing, quench hardening, and austempering. The hardness of martensite. Tempering of martensite. Heat treatment of noneutectoid plain carbon steel. T.T.T. diagrams of alloy steels. Hardenability of steel and the end-quench test. The process of precipitation (or Age) hardening and its application to the aluminum-copper alloys. Solution treatment, quenching and aging. Artificial (or forced) aging and over- aging. Surface hardening methods: - no change in surface composition methods :- Flame, induction, laser and electron beam hardening processes- change in surface composition methods :carburizing and Nitriding; applications.	11	20%
VI	 Alloy steels:- Effects of alloying elements on steel: dislocation movement, polymorphic transformation temperature, alpha and beta stabilizers, formation and stability of carbides, grain growth, displacement of the eutectoid point, retardation of the transformation rates, improvement in corrosion resistance, mechanical properties Nickel steels, Chromium steels etc Enhancement of steel properties by adding alloying elements: - Molybdenum, Nickel, Chromium, Vanadium, Tungsten, Cobalt, Silicon, Copper and Lead. High speed steels:- Mo and W types, effect of different alloying elements in HSS 	7	20%

 Cast irons: Classifications; grey, white, malleable and spheroidal graphite cast iron etc, composition, microstructure, properties and applications.

 Principal Non ferrous Alloys: - Aluminum, Copper, Magnesium, Nickel, study of composition, properties, applications, reference shall be made to the phase diagrams whenever necessary.

 END SEMESTER EXAM

Question Paper Pattern

Maximum marks: 100

Time: 3 hours

The question paper should consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course coo	le Course Name	L-T-P -Credit		Year of Introduction
ME211	MECHANICS OF SOLIDS AND MECHANICS OF MACHINES	3-1-0-4		2016
Prerequisi	te: Nil	·		
Course Ob	jectives			
	• To introduce various behavior of struc	tural components u	nder vari	ous loading
	conditions	17 A T A		
	• To impart the basics of machines and n	mechanisms.	M	
Syllabus	THIMEOL	2 GIG	1111	
Definition and Rolling	of stress, strain and their relations -Mechan Friction –friction drives - Applied and Co g - Vibration			
Expected of		0111		
	will be able to			
	understand the principles in the formation			ematics.
	understand the effect of friction in differen			
	analyse the forces and toques acting on sin understand the importance of balancing ar		stems	
iv. Text Book		iu vibration.		
	mbekar A.G., "Mechanism and Machine"	Theory" Prentice H	all of Ind	ia. New Delhi.
	007			,
2. S	higley J.E., Pennock G.R and Uicker J.J.,	"Theory of Machin	es and M	echanisms",
	xford University Press, 2003			
3.4	. R.S.Khurmi, J.K.Gupta, "Theory of Mac	hines" S.Chand Pul	blications	
Reference				
	artin, J.W., "Engineering Materials, Their	properties and App	olications	", Wykedham
	iblications (London) Ltd., 1987.			
	an Vlack.L.H., "Materials Science for Eng			
	nomas Bevan, "Theory of Machines", CBS			
	hosh.A, and A.K.Mallick, "Theory and M	achine", Affiliated	East-Wes	t Pvt. Ltd., New
	elhi, 1988.	and Mashinas? W	ler Fest	we I tol Norry
	ao.J.S. and Dukkipatti R.V. "Mechanisms elhi, 1992.	and Machines, w	ney-Easte	em Liu., New
	amamurthi. V, "Mechanisms of Machine",	Narosa Publishina	House	0002
	obert L. Norton, "Design of Machinery",	-		.002
	itterton.G.,"Aircraft Materials and Process			ishing Co
0. 1	interton.o., Aneralt Materials and Troces			isining CO.,
1	995. Course	Plan		
Module	Contents	- 1411	Hours	Sem.ExamMarks
	Definition of stress, strain and their relation	ons	4	Semi-Examplei RS
	relations between material constants – axis		т	
	statically determinate and indeterminate		4	150/
	tension & compression -plane truss analys	-		15%
	Method of joints – method of sections		4	1
	thermal stresses – impact loading.			

	Mechanisms – Terminology and definitions	2	
п	kinematics inversions of 4 bar and slider crank chain –	4	
	kinematics inversions of 4 bar and sider crank chain – kinematics analysis in simple mechanisms – velocity and	т	
	acceleration polygons		
	Analytical methods– computer approach.	2	15%
	FIRST INTERNAL EXAMINATION	2	1,3 70
	Cams – classifications – displacement diagrams - layout of	3	
	plate cam profiles– derivatives of follower motion –	5	
	circular arc and tangent cams.	A A	
III	Spur gear – law of toothed gearing – involute gearing –	3	
	Interchangeable gears	AT	15%
	Gear tooth action interference and undercutting –	2	
	nonstandard teeth		
	Gear trains – parallel axis gears trains – epicyclic gear	2	15%
	trains – automotive transmission gear trains.		
IV	Sliding and Rolling Friction angle – friction in threads	2	
	Friction Drives – Friction clutches – Belt and rope drives –	3	
	brakes – Tractive resistance.		
	SECOND INTERNAL EXAMINATION		
	Applied and Constrained Forces – Free body diagrams –	4	20%
	static Equilibrium conditions – Two, Three and four		
	members - Static Force analysis in simple machine		
V	members		
v	Dynamic Force Analysis –Inertia Forces and Inertia	3	
	Torque		
	D'Alembert's principle – superposition principle –	3	
	dynamic Force Analysis in simple machine members.	4	2004
	Static and Dynamic balancing – Balancing of revolving	4	20%
	and reciprocating masses- Balancing machines	2	
VI	Free vibrations – Equations of motion – natural Frequency	3	
	Damped Vibration – critical speed of simple shaft –	4	
	Torsional vibration – Forced vibration – harmonic Forcing – Vibration isolation.	/	
		-	
	END SEMESTER EXAM		

END SEMESTER EXAM

Question Paper Pattern

Maximum marks: 100,

Exam duration: 3 hrs

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks) Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)

Course cod	le Course Name	L-T-P - Credits	Year o Introduc	
ME212	FLUID MECHANICS	3-1-0-4	2016	
Prerequisit	te : Nil			
Course Ob	jectives			
	establish fundamental knowledge of basic		ress specifi	c topics
	vant to simple applications involving fluids			
	amiliarize students with the relevance of fl	uid dynamics to many en	gineering sy	ystems
Syllabus	ution Kinomotion of fluid flow. Fluid Sta	tion Dynamics of fluid (low Flow	theoush
_	erties, Kinematics of fluid flow, Fluid Sta rept of Boundary Layer, Dimensional Anal-			unougn
pipes, Conc	ept of Boundary Layer, Dimensional Anal	ysis and Hydraune sinni	lude	
Expected o	utcome	CITV		
	of the course students will	SILY		
	come conversant with the concepts of flow			es
	able to apply the momentum and energy e		blems.	
	able to evaluate head loss in pipes and cor		norimonta a	nd to
	able to use dimensional analysis to design bly dynamic similarity	physical of numerical ex	perments a	nu to
Text Bool				
	alachandran.P, Engineering Fluid Mechani	ics, PHI,2012		
2. A	S Saleem, Fluid Mechanics, Fathima Boo	ks,2016		
Reference				
	sal R. K., A Textbook of Fluid Mechanics	and Hydraulic Machines,	Laxmi	
	lications, 2005 gel, Fluid Mechanics, McGraw Hill Educa	tion India 2014		
	R. W. and A. T. McDonald, Introduction t		hn Wiley ar	hd
	s, 2009.	o i fulu dynamics, <i>5</i> /e, 50	ini wney ai	iu.
	ph Karz, Introductory Fluid Mechanics,	Cambridge University pro	ess,2010	
5. Moc	li P. N. and S. M. Seth, Hydraulics & Fluic	l Mechanics, S.B.H Publi	shers, New	Delhi,
	2 . Streeter V. L., E. B. Wylie and K. W.	Bedford, Fluid Mechanic	s, Tata McO	Graw
	, Delhi, 2010.	:11 1002		
	mes I. H <mark>, Mechanics of F</mark> luids, McGraw H ite F.M., Fluid Mechanics, 6/e, Tata McGra			
7. ••••	Course			
				Sem.
Module	Contents		Hours	Exam
I	Introduction: Fluids and continuum, Phy	vical properties of fluid	ls, 8	Marks
	density, specific weight, vapour pressure,			
	Ideal and real fluids, Newtonian and no		•	
	Statics- Pressure-density-height relationshi			
	plane and curved surfaces, center of press			
-	immersed and floating bodies, fluid ma			
	accelerations, measurement of pressure	isses subjected to utilior	111	150/
				15%

Kinematics of fluid flow: Eulerian and Lagrangian approaches,

classification of fluid flow, 1-D, 2-D and 3-D flow, steady, unsteady,

uniform, non-uniform, laminar, turbulent, rotational, irrotational

Π

8

15%

	flame stars and lines and lines stars have stars and the stars of the		1				
	flows, stream lines, path lines, streak lines, stream tubes, velocity and						
	acceleration in fluid, circulation and vorticity, stream function and						
	potential function, Laplace equation, equipotential lines flow nets,						
	uses and limitations						
	FIRST INTERNAL EXAMINATION						
III	Dynamics of Fluid flow: Fluid Dynamics: Energies in flowing fluid, head, pressure, dynamic, static and total head, Control volume analysis of mass, momentum and energy, Equations of fluid dynamics: Differential equations of mass, energy and momentum (Euler's equation), Navier-Stokes equations (without proof) in rectangular and cylindrical co-ordinates, Bernoulli's equation and its applications: Venturi and Orifice meters, Notches and Weirs (description only for notches and weirs). Hydraulic coefficients,	9	15%				
IV	Pipe Flow: Viscous flow: Reynolds experiment, significance of Reynolds number, critical Reynolds number, shear stress and velocity distribution in a pipe, law of fluid friction, head loss due to friction, Hagen Poiseuille equation. Turbulent flow: Darcy- Weisbach equation, Chezy's equation Moody's chart, Major and minor energy losses, hydraulic gradient and total energy line, flow through long pipes, pipes in series, pipes in parallel, equivalent pipe, siphon, transmission of power through pipes, efficiency of transmission, Water hammer, Cavitation.	10	15%				
	SECOND INTERNAL EXAMINATION						
V	Concept of Boundary Layer : Growth of boundary layer over a flat plate and definition of boundary layer thickness, displacement thickness, momentum thickness and energy thickness, laminar and turbulent boundary layers, laminar sub layer, velocity profile, Von- Karman momentum integral equations for the boundary layers, calculation of drag, separation of boundary and methods of control.	10	20%				
VI	Dimensional Analysis and Hydraulic similitude: Dimensional analysis, Buckingham's theorem, important dimensional numbers and their significance, geometric, Kinematic and dynamic similarity, model studies. Froude, Reynold, Weber, Cauchy and Mach laws- Applications and limitations of model testing, simple problems only	10	20%				
	END SEMESTER EXAM						

Exam duration: 3 hours

Maximum marks: 100, The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks) **Part B**

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks) **Part C**

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

ME213	THEORY OF MACHINES	3-0-0-3		2016		
Prerequis	Prerequisite : Nil					
Course O	ojectives					
• To	understand the layout of linkages in the as	ssembly of a system/	machi	ne.		
• To	study the principles involved in assessing	the displacement, ve	elocity	and acceleration at		
any	point in a link of a mechanism.					
• To	analyse the motion resulting from a specif	fied set of linkages in	n a me	chanism.		
• To	study the application of friction in different	nt devices.	Ŵ			
• To	study the power transmission devices.	- IVILI	4.5	*		
• To	study the use of gyroscopic couples.		ΔΙ			
• To	understand the principles in mechanisms	used for governing o	f mach	nines.		
	I INIIV/FD	SITV				
Syllabus	UNIVEN	OILI				
Kinematic	s – velocity and acceleration- Friction – H	Brakes – Gear – Can	ns- Gy	roscope - Flywheel		
Governors	- Static and dynamic balancing - Vibration	1				
Expected	outcome.					
	er this programme, students are expected	0		0		
	chanisms and theories which will he		-			
	ipments and also to solve practical proble	ms in the area of ma	chines	and mechanisms.		
Text Boo						
	Ballaney, Theory of Machines and Mech		lishers			
2. 88	. Rattan-Theory of machines, McGraw Hi	11				
Reference	es:					
1. Be	van, Theory of Machines, Pearson Education	ion, 1986				
2. Ra	o J S and Dukkipati R V, Mechanism and	Machine Theory, W	iley Ea	sternLtd.		
	lhotra, D.R and Gupta, H C, Theory	of Machines, Saty	a Prak	asam Tech. India		
	plications Ltd.					
	sh A and Mallick A K, Theory of Mac	hines and Mechanis	ms, A	ffiliated East West		
Pre						
5. Shi	gley J E. and Uicker J J, Theory of Machi	nes and Mechanism	s, McG	raw–Hill.		
	Course Plan					
Module	Contents	H	ours	Sem.ExamMarks		
	Kinematics - links, mechanism, Degree					
	Grashoff's law, four-bar chain, Slider					
	inversions and practical applications.	-				
Ι	acceleration diagrams of simple mechanic	sms.	7	15%		
	Coriolis acceleration (Theory only).					
	Friction - Pressure and wear theories, piv					
	friction, Single and multiple disc clutches	8.				

Brakes - block and band brakes, self energizing and

Gear – Different types of gears- Nomenclature of spur

Simple, compound gear trains and epicyclic gear

7

Gear trains -

15%

self-locking in braking.

and helical gears, Law of gearing,

Π

Course code

Course Name

L-T-P-Credits

Year of Introduction

	trains.	
	FIRST INTERNAL EXAMINATION	
III	Cams - types of cams, cam profiles for knife edged and roller followers with and without offsets for SHM, constant acceleration-deceleration, constant velocity 7 and cycloidal motion	15%
IV	Gyroscope –Gyroscopic torque, gyroscopic stabilization of ships and aeroplanes.7Flywheel - Turning moment diagrams, fluctuation of energy.7	15%
	SECOND INTERNAL EXAMINATION	
V	Governors - types of governors, simple watt governor - Porter, Proell governors Isochronisms, hunting, sensitivity and stability. Hartnell governor(Theory only). Static and dynamic balancing of rotating mass- Single and several masses in different planes, balancing of reciprocating mass, Dynamic analysis of slider crank mechanism(Theory only).	20%
VI	Vibration - kinematics of vibrating motion, vibration systems having single degree of freedom, free and force vibration, damped vibration.7Torsional vibrations -Transverse vibration. whirling of shaft (Theory only).7	20%
	END SEMESTER EXAM	

Question Paper Pattern ESIQ.

Maximum marks: 100

Time: 3 hours

The question paper should consist of three parts

Part A

2014 4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)

Course co	de Course Name	L-T-P - Credits	Yea	r of Introduction
ME214	Theory of Machines	4-0-0-4		2016
Prerequisi	ite : Nil		•	
Course Ol	ojectives			
• To im	part basic knowledge on kinematics of m	nechanisms and machin	nes.	
	derstand kinematic synthesis of mechanis			
	alyse the motion resulting from a specifie	-		
	dy the principles involved in assessing th	ne displacement, veloc	ity and	acceleration at
	oint in a link of a mechanism.	NALA	IVI	
	idy the application of friction in different	devices.	A T	
• To stu	ndy the power transmission devices		-	
Syllabus		CITV		
•	cs – velocity and acceleration- Friction	n – Brakes – Gear	– Can	ns- Gyroscope -
	Governors- Static and dynamic balancing			· ·
Expected				
	fter the course, students will understand the	1		
	achines and will be able to solve design p	problems in the area of	mecha	anisms and
m	achines.			
Text Boo	ks			
	L Ballaney, Theory of Machines and Med	chanisms, Khanna Pub	lishers	
	S. Rattan-Theory of machines, McGraw I			
Referenc				
	E. Shigley and J.J Uicker, Theory of Mach			
	Bevan T., Theory of Machines- A Text Be lson C. E. and J. P. Sadler, Kinematics an	0 0		
	bekar A. G., Mechanism and Machine Tl		nery, r	earson.
	sh A. and A. K. Mallick, Theory of Mach		Affili	ated East West
Pre		í literatur í	, 	
6. V.F	P. Sing <mark>h, Theory of machin</mark> es, Dhanpat Ra	ai.		
		e Plan	<u>.</u>	
Module	Contents		ours	Sem.ExamMarks
	Kinematics - links, mechanism, Degr			
	Grashoff's law, four-bar chain, Slide inversions and practical application			
	steering mechanisms: Davis and Ack			
Ι	mechanisms.		10	15%
-				
	mechanisms. Coriolis acceleration	-		
	Friction - Pressure and wear theories,			
	friction, Single and multiple disc clutch	1		

II	 Brakes - block and band brakes, self energizing and self-locking in braking. Gear – Different types of gears- Nomenclature of spur and helical gears, Law of gearing, Gear trains - Simple, compound gear trains and epicyclic gear trains. 	9	15%
	FIRST INTERNAL EXAMINATION		
III	Cams - types of cams, cam profiles for knife edged and roller followers with and without offsets for SHM, constant acceleration-deceleration, constant velocity and cycloidal motion.	A ⁸ M	15%
IV	Gyroscope –Gyroscopic torque, gyroscopic stabilization of ships and aeroplanes.Flywheel - Turning moment diagrams, fluctuation of energy.	8	15%
	SECOND INTERNAL EXAMINATION		
V	Governors - types of governors, simple watt governor - Porter, Proell governors Isochronisms, hunting, sensitivity and stability. Hartnell governor. Static and dynamic balancing of rotating mass- Single and several masses in different planes, balancing of reciprocating mass, Dynamic analysis of slider crank mechanism.	10	20%
VI	Vibration - kinematics of vibrating motion, vibration systems having single degree of freedom, free and force vibration, damped vibration. Torsional vibrations -Transverse vibration. whirling of shaft (Description only).	9	20%
	END SEMESTER EXAM		

Maximum marks: 100,

Exam duration: 3 hrs

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks) Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course co	ode	Course Name	L-T-P - Credit		Year of troduction
ME218	8	ELEMENTS OF MACHINE DESIGN	3-1-0-4		2016
Prerequis	site : M	E213 Theory of machines		•	
Course O	bjectiv	es:			
•	To de	velop an ability to design a system to	meet the desired nee	ds by cho	osing proper
	machi	ne elements and mechanisms within the	ne realistic constraints	6	
Syllabus:	A	PARDI	KALAN	A	
•		design – design process – materia	l behaviour – stress	s and stra	ain – stress
		neories of failure - Welded joints - I			
		of Bearing- Design of Gears-Design			-8
	0		VTIS		
Expected	d outco	me.			
•		completion of this course, students are	e expected to have an	understan	ding of the
		of various machine elements. They v	-		0
	-	inisms.			
Data Bo	ok (Ap	proved for use in the examination):			
	· -	ech., Machine Design Data Handbook			
2. K.	Mahad	evan, Design data Book C.B.S Pul).		
Reference	ces:				
1. Sh	nigley J.	E., Mechanical Engineering Design, N	AcGraw Hill Book Co	ompany	
-					
2. Sie	egel, M	aleev& Hartman, Mechanical Design	of Machines, Internat	ional Boo	k Company
	•	C C		ional Boo	k Company
3. Ph	ielan R.	M., Fundamentals of Mechanical Desi	ign, TMH, Ltd.		
 Ph Do 	elan R. Dughtie	C C	ign, TMH, Ltd.		1.
 Ph Do Co 	elan R. oughtie ompany	M., Fundamentals of Mechanical Desi V.L & Vallance A.V., Design of	ign, TMH, Ltd. Machine Elements,	McGraw	Hill Book
 Ph Do Co Juv 	nelan R. Dughtie Ompany Vinall R	M., Fundamentals of Mechanical Desi V.L & Vallance A.V., Design of .C. &Marshek K.M., Fundamentals o	ign, TMH, Ltd. Machine Elements, f Machine Componer	McGraw	Hill Book
 3. Ph 4. Do Co 5. Jun 6. Ma 	nelan R. Dughtie Dompany Vinall R achine I	M., Fundamentals of Mechanical Desi V.L & Vallance A.V., Design of C.C. & Marshek K.M., Fundamentals o Design Robert L Norton, Prentice Hal	ign, TMH, Ltd. Machine Elements, f Machine Componer ll India	McGraw	Hill Book
 Ph Do Co Juv Ma De 	nelan R. Dughtie Ompany vinall R achine I esign of	M., Fundamentals of Mechanical Desi V.L & Vallance A.V., Design of C.C. & Marshek K.M., Fundamentals o Design Robert L Norton, Prentice Hal machine elements M.F.Spotts, Prentice	ign, TMH, Ltd. Machine Elements, f Machine Componer Il India ce Hall India	McGraw	Hill Book
 Ph Do Co Juv Ma De Ma 	nelan R. Doughtie Dompany Vinall R achine J esign of achine J	M., Fundamentals of Mechanical Desi V.L & Vallance A.V., Design of C.C. & Marshek K.M., Fundamentals o Design Robert L Norton, Prentice Hal machine elements M.F.Spotts, Prentic Design – Wentzell, Thomson Learning	ign, TMH, Ltd. Machine Elements, f Machine Componer Il India ce Hall India	McGraw	Hill Book
 Ph Do Co Juv Ma De Ma 	nelan R. Doughtie Dompany Vinall R achine J esign of achine J	M., Fundamentals of Mechanical Desi V.L & Vallance A.V., Design of C.C. & Marshek K.M., Fundamentals o Design Robert L Norton, Prentice Hal machine elements M.F.Spotts, Prentic Design – Wentzell, Thomson Learning S.G, Machine Design, THM	ign, TMH, Ltd. Machine Elements, f Machine Componer Il India ce Hall India g	McGraw	Hill Book
 Ph Do Co Jun Ma Ma De Ma Ku 	nelan R. Doughtie Dompany Vinall R achine J esign of achine J	M., Fundamentals of Mechanical Desi V.L & Vallance A.V., Design of C.C. & Marshek K.M., Fundamentals o Design Robert L Norton, Prentice Hal machine elements M.F.Spotts, Prentic Design – Wentzell, Thomson Learning S.G, Machine Design, THM	ign, TMH, Ltd. Machine Elements, f Machine Componer Il India ce Hall India g	McGraw at Design,	Hill Book
 Ph Do Co Juv Ma De Ma 	nelan R. Doughtie Dompany Vinall R achine J esign of achine J	M., Fundamentals of Mechanical Desi V.L & Vallance A.V., Design of C.C. & Marshek K.M., Fundamentals o Design Robert L Norton, Prentice Hal machine elements M.F.Spotts, Prentic Design – Wentzell, Thomson Learning S.G, Machine Design, THM	ign, TMH, Ltd. Machine Elements, f Machine Componer Il India ce Hall India g	McGraw	Hill Book
 Ph Do Co Jun Jun Ma To be Ma Ku 	nelan R. Dughtie Dompany vinall R achine J esign of achine J alkarni S	M., Fundamentals of Mechanical Desi V.L & Vallance A.V., Design of C.C. & Marshek K.M., Fundamentals of Design Robert L Norton , Prentice Hal machine elements M.F.Spotts, Prentic Design – Wentzell, Thomson Learning S.G, Machine Design, THM Course F Contents	ign, TMH, Ltd. Machine Elements, f Machine Componen ll India ce Hall India g Plan	McGraw at Design,	Hill Book John Wiley
 Ph Do Co Jun Ma Ma De Ma Ku 	Introd	M., Fundamentals of Mechanical Desi V.L & Vallance A.V., Design of C.C. &Marshek K.M., Fundamentals o Design Robert L Norton , Prentice Hal machine elements M.F.Spotts, Prentic Design – Wentzell, Thomson Learning S.G, Machine Design, THM Course F Contents	ign, TMH, Ltd. Machine Elements, f Machine Componen ll India ce Hall India g Plan	McGraw at Design,	Hill Book John Wiley Sem. Exan
 Ph Do Co Jun Jun Ma To be Ma Ku 	Introd	M., Fundamentals of Mechanical Desi V.L & Vallance A.V., Design of C.C. & Marshek K.M., Fundamentals o Design Robert L Norton , Prentice Hal machine elements M.F.Spotts, Prentic Design – Wentzell, Thomson Learning S.G, Machine Design, THM Course H Contents uction to design - steps in design pro- rances and fits - principles of standard	ign, TMH, Ltd. Machine Elements, f Machine Componer Il India ce Hall India g Plan cess - design factors rdisation. Materials	McGraw at Design,	Hill Bool John Wiley
 Ph Do Co Jun Ma Ma De Ma Ku 	Introd and the achine I achine I achine I achine I alkarni S	M., Fundamentals of Mechanical Desi V.L & Vallance A.V., Design of C.C. &Marshek K.M., Fundamentals o Design Robert L Norton , Prentice Hal machine elements M.F.Spotts, Prentic Design – Wentzell, Thomson Learning S.G, Machine Design, THM Course F Contents uction to design - steps in design pro- rances and fits - principles of standa heir properties - Elastic and plastic be	ign, TMH, Ltd. Machine Elements, f Machine Componer ll India ce Hall India g Plan cess - design factors irdisation. Materials chaviour of metals -	McGraw at Design,	Hill Bool John Wiley
 Ph Da Ca Juv Ma Ma Ma Ma Ku 	Introd and th ductile	M., Fundamentals of Mechanical Desi V.L & Vallance A.V., Design of A.C. &Marshek K.M., Fundamentals o Design Robert L Norton , Prentice Hal machine elements M.F.Spotts, Prentic Design – Wentzell, Thomson Learning S.G, Machine Design, THM Course H Contents uction to design - steps in design pro- rances and fits - principles of standa teir properties - Elastic and plastic be e and brittle behaviour. True stress an	ign, TMH, Ltd. Machine Elements, f Machine Componen ll India ce Hall India g Plan cess - design factors rdisation. Materials ehaviour of metals - d true strain - stress	McGraw at Design, Hours	Hill Bool John Wiley Sem. Exan Marks
 Ph Do Co Jun Ma Ma De Ma Ku 	Introd - toler and th ductile - strai	M., Fundamentals of Mechanical Desi V.L & Vallance A.V., Design of C.C. &Marshek K.M., Fundamentals o Design Robert L Norton , Prentice Hal machine elements M.F.Spotts, Prentic Design – Wentzell, Thomson Learning S.G, Machine Design, THM Course F Contents uction to design - steps in design pro- rances and fits - principles of standa eir properties - Elastic and plastic be e and brittle behaviour. True stress an n curves - Selection of materials -	ign, TMH, Ltd. Machine Elements, f Machine Componer Il India ce Hall India g Plan cess - design factors rdisation. Materials chaviour of metals - d true strain - stress stresses in machine	McGraw at Design,	Hill Bool John Wiley
 Ph Da Ca Juv Ma Ma Ma Ma Ku 	Introd - toler and th ductile	M., Fundamentals of Mechanical Desi V.L & Vallance A.V., Design of a.C. &Marshek K.M., Fundamentals of Design Robert L Norton , Prentice Hal machine elements M.F.Spotts, Prentic Design – Wentzell, Thomson Learning S.G, Machine Design, THM Course F Contents uction to design - steps in design pro- rances and fits - principles of standa heir properties - Elastic and plastic be e and brittle behaviour. True stress an n curves - Selection of materials - - tension, compression, shear, ben	ign, TMH, Ltd. Machine Elements, f Machine Componer Il India ce Hall India g Plan cess - design factors rrdisation. Materials chaviour of metals - d true strain - stress stresses in machine ding and torsional	McGraw at Design, Hours	Hill Bool John Wiley Sem. Exan Marks
 Ph Da Ca Juv Ma Ma Ma Ma Ku 	Introd and th ductile and th ductile stresse	M., Fundamentals of Mechanical Desi V.L & Vallance A.V., Design of A.C. &Marshek K.M., Fundamentals of Design Robert L Norton , Prentice Hal machine elements M.F.Spotts, Prentic Design – Wentzell, Thomson Learning S.G, Machine Design, THM Course F Contents uction to design - steps in design pro- rances and fits - principles of standa teir properties - Elastic and plastic be e and brittle behaviour. True stress an n curves - Selection of materials - - tension, compression, shear, ben es, combined stress. Stress concentrat	ign, TMH, Ltd. Machine Elements, f Machine Componen ll India ce Hall India g Plan cess - design factors rdisation. Materials ehaviour of metals - d true strain - stress stresses in machine ding and torsional tion, stress intensity	McGraw at Design, Hours	Hill Bool John Wiley Sem. Exan Marks
 Ph Da Ca Juv Ma Ma Ma Ma Ku 	Introd a chine I achine I achine I achine I alkarni S Introd - toler and th ductile - strai parts stresse factor	M., Fundamentals of Mechanical Desi V.L & Vallance A.V., Design of C.C. &Marshek K.M., Fundamentals o Design Robert L Norton , Prentice Hal machine elements M.F.Spotts, Prentic Design – Wentzell, Thomson Learning S.G, Machine Design, THM Course F Contents uction to design - steps in design pro- rances and fits - principles of standa eir properties - Elastic and plastic be e and brittle behaviour. True stress an n curves - Selection of materials - - tension, compression, shear, ben es, combined stress. Stress concentrat - Fracture toughness -factor of safety	ign, TMH, Ltd. Machine Elements, f Machine Componer Il India ce Hall India g Plan cess - design factors rdisation. Materials ehaviour of metals - d true strain - stress stresses in machine ding and torsional tion, stress intensity y, margin of safety -	McGraw at Design, Hours	Hill Bool John Wiley Sem. Exan Marks
 Ph Da Ca Juv Juv Ma Ma Ma Ma Ku 	Introd a chine I achine I achine I achine I alkarni S Introd - toler and th ductile - strai parts stresse factor	M., Fundamentals of Mechanical Desi V.L & Vallance A.V., Design of A.C. &Marshek K.M., Fundamentals of Design Robert L Norton , Prentice Hal machine elements M.F.Spotts, Prentic Design – Wentzell, Thomson Learning S.G, Machine Design, THM Course F Contents uction to design - steps in design pro- rances and fits - principles of standa teir properties - Elastic and plastic be e and brittle behaviour. True stress an n curves - Selection of materials - - tension, compression, shear, ben es, combined stress. Stress concentrat	ign, TMH, Ltd. Machine Elements, f Machine Componer Il India ce Hall India g Plan cess - design factors rdisation. Materials ehaviour of metals - d true strain - stress stresses in machine ding and torsional tion, stress intensity y, margin of safety -	McGraw at Design, Hours	Hill Book
 Ph Da Ca Juv Juv Ma Ma Ma Ma Ku 	Introd and the ductile and the ductile stresse factor variab	M., Fundamentals of Mechanical Desi V.L & Vallance A.V., Design of A.C. &Marshek K.M., Fundamentals of Design Robert L Norton , Prentice Hal machine elements M.F.Spotts, Prentic Design – Wentzell, Thomson Learning S.G, Machine Design, THM Course F Contents uction to design - steps in design pro- rances and fits - principles of standa teir properties - Elastic and plastic be e and brittle behaviour. True stress an n curves - Selection of materials - - tension, compression, shear, ben es, combined stress. Stress concentrat - Fracture toughness -factor of safety de stress - endurance limit - Theories of	ign, TMH, Ltd. Machine Elements, f Machine Componen ll India ce Hall India g Plan cess - design factors rdisation. Materials ehaviour of metals - d true strain - stress stresses in machine ding and torsional tion, stress intensity y, margin of safety - of failure	McGraw at Design, Hours	Hill Book John Wiley Sem. Exam Marks
 Ph Da Ca Juv Ma Ma Ma Ma Ku 	Introd - toler and th ductile - strai parts stresse factor variab	M., Fundamentals of Mechanical Desi V.L & Vallance A.V., Design of C.C. &Marshek K.M., Fundamentals o Design Robert L Norton , Prentice Hal machine elements M.F.Spotts, Prentic Design – Wentzell, Thomson Learning S.G, Machine Design, THM Course F Contents uction to design - steps in design pro- rances and fits - principles of standa eir properties - Elastic and plastic be e and brittle behaviour. True stress an n curves - Selection of materials - - tension, compression, shear, ben es, combined stress. Stress concentrat - Fracture toughness -factor of safety	ign, TMH, Ltd. Machine Elements, f Machine Componen Il India ce Hall India g Plan cess - design factors rdisation. Materials chaviour of metals - d true strain - stress stresses in machine ding and torsional tion, stress intensity , margin of safety - of failure Gerber, Goodman,	McGraw at Design, Hours	Hill Bool John Wiley Sem. Exan Marks

III	Welded joints - types of joints, strength of welds, fillet welds- eccentric loading.Design of keys and cotters.Shaft couplings, - stresses in couplings -design of couplings- Muff and flanged coupling		9	15%
IV	Gears - spur and helical gears - Design for static and dynamic loading and wear - Lewis and Buckingham equations for design.	M	10	15%
	SECOND INTERNAL EXAMINATION	T		
V	Bearing- Journal bearing -Introduction to lubrication - Hydrodynamic bearings - Sommerfield Number, Petroff's number, L/D ratio, Clearance ratio - minimum film thickness - bearing materials. Rolling contact bearings - bearing types - Ball & roller bearings - Static and dynamic load capacity - Equivalent dynamic load - Bearing life - Selection of bearing.		10	20%
VI	Shaft - stresses in shafts - design for static loads - reversed bending and steady torsion design for fatigue loading		9	20%

END SEMESTER EXAM

Question Paper Pattern

Max. marks: 100, Time: 3 hrs

The question paper should consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

2014

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course co	ode Course Name	L-T-P - Credits		ear of oduction
ME222	2 THERMAL ENGINEERING I	[4-0-0-4		2016
Prerequis	ite : ME207 Thermal engineering - I		ł	
• To he • To • To • To • Syllabus: Fuels and	Objectives: to acquire knowledge on the working of IC eat exchangers. to introduce the combustion process in IC to understand air pollution from IC engine combustion- Normal and abnormal combust erformance testing of IC engines -IC engine	engines s and its remedies. stion in IC engines- Alte	rnate fuels	s in IC
and Air co Expected At the end i. ii. Text Boo	nditioning. d outcome: d of the course the students will be able to Integrate the concepts, laws and methodo into analysis of cyclic processes To apply the thermodynamic concepts int engines, Refrigeration and air conditionin	logies from the course in to various thermal application of the texchangers.	n thermod	ynamics
2. R.I	K Rajput, Thermal Engineering, Laxmi put thore, Thermal Engineering 1e, Tata McGr	lications,2010		
1. V. 2. T.I Pea 3. J.B 4. Gil	es Books: Ganesan, Fundamentals of IC engines, Tat D. Eastop and A McConkay, Applied therm arson education,1996 Heywood, I.C engine fundamentals. McG I, P.W., Smith, JR., J.H., and Ziurys, E.J ford and IBH,1959	nodynamics for engineeri raw-Hill,2011 Fundamentals of internal	-	
	Course	e Plan		
Module	Contents		Hours	Sem. Exam Marks
Ι	Fuels and combustion- Stochiometry, can and equivalence ratios, volumetric and fuel properties.		9	15%
II	Combustion in IC engines- Normal and a in SI and CI engines, auto ignition detonation- factors affecting detonation, k	- pre ignition and	9	15%
	FIRST INTERNAL E	XAMINATION		2010

III	Performance testing of IC Engines, Alternate fuels in IC engines- biodiesel, hydrogen, natural gas, LPG, Alcohol- IC engine pollution and control, Emission norms		9	15%
IV	Heat Exchangers- Different types- LMTD and effectiveness. Problems		9	15%
	SECOND INTERNAL EXAMINATION			
V	Refrigeration- Vapor compression refrigeration system, Vapor absorption refrigeration system, simple cycle- TS and PH diagrams- COP- Refrigerants and their properties- Eco friendly refrigerants. Application of refrigeration- Domestic refrigerators, Water coolers, ice plants	M L	9	20%
VI	Air conditioning- Psychrometry-Comfort and industrial air conditioning, Working of room air conditioners- Use of psychrometric charts- Split and packaged system- Automobile airconditioning.		9	20%
	END SEMESTED EVAM			I

END SEMESTER EXAM

Question Paper Pattern

Time: 3 hours

Max. marks: 100

The question paper should consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code	Course Name	L-T-P-Credits	Year of Introduction
ME233	Mechanical Engineering Lab	0-0-3-1	2016
Prerequisite : Ni	1		
To provide energy corTo familia	p engineering related skills of fluid me e necessary practical knowledge rela oversion systems. arize with various apparatus and mac ct experiments.	ted to the theory o	f fluid mechanics and
	List of Experime	ents	
1. Determina	tion of coefficient of discharge and ca	libration of rectang	ular notch
2. Determina	tion of coefficient of discharge and ca	libration of triangul	ar notch.
3. Determina	tion of coefficient of discharge and ca	libration of venturI	meter
4. Determina	tion of coefficient of discharge and ca	libration of orifice	meter.
5. Determina	tion of hydraulics coefficient <mark>usi</mark> ng or	ifice apparatus.	
6. Determina	tion of meta-centric height and radius	of gyration of float	ing body.
7. Pipe friction	on apparatus to find Darcy's fri <mark>c</mark> tional	coefficient and Che	ezy's constant.
8. Performan	ce test on positive displacement pump)	
9. Performan	ce test on centrifugal pump		
10. Perform <mark>an</mark>	ce test on impulse turbine.		1.10
11. Performan	ce test on reaction turbine.		
12. Performan	ce test on hydraulic ram		/
13. Performan	ce test on two stroke diesel engine.		A
14. Performan	ce test on four stroke diesel engine.		
15. Performan	ce test on four stroke petrol engines		
16. Performan	ce test on two stroke petrol engines		
17. Calibration	n of pressure gauge		
Note: It is	s mandatory to conduct at least 12 e	xperiments.	

Course code	Course Name	L-T-P-Credits	Year of Introduction
ME235	MACHINE DYNAMICS AND MATERIAL TESTING LAB	0-0-3-1	2016
Prerequisite: ME2	09 & ME213		
Course Objectives	DIADDIII	1ZATA	V.X
• To make th	e students understand the theory of ma	chines through prac	tical exercises.
• To acquire	knowledge on material testing principl	es and use of destru	ctive testing equipment.
Syllabus	ECHNOL	UILA	
•	LININ/ED G	VTI	
List of experiments			
	est on Mild Steel, High carbon Steel and	Cast Iron specimens	
	t on MS Rod		
	est on MS, Aluminium and Brass wire		
	Charpy Impact tests		
	test (Rockwell and Brinnell)		
	sion test on helical springs		
	pic Examination of Steels, Cast Iron, Al,		
	Expansion Coefficient using Dial Gauge	Dilatometer.	
	easurement using Rosette strain gauge		
	udy the effect of hardening- Improvemen		
11. Temperin	g - Improvement Mechanical properties (Comparison (i) Unha	rdened specimen (ii)
Quencheo	d Specimen and (iii) Quenched and tempe	ered specimen.	
12. To study	magnetic hysteresis of ferromagnetic mat	erial.	
	Governor Apparatus		
	etermination of speed and sensitivity of V		
	etermination of speed and sensitivity of F	-	
	etermination of speed and sensitivity of F	orter governor	
14. Determin	ation of whirling speed of shaft		
15. Cam Stuc	l <mark>y Analysis (Circular c</mark> am with roller, kni	fe edge and flat follo	wer)
16. Pendulun	n Experiment		
	imple pendulum Experiment		
	ifilar suspension Pendulum Experiment		
c) C	ompound pendulum Experiment		
17. Torsional	vibration		
	ingle rotor Torsional vibration experiment		
b) Si	ingle rotor Torsional vibration experiment	t	
18. Journal bea	aring experiment		
Expected outcome			
-		vnacted to have line	wladge on motorial tast
	letion of this programme, students are e		
principles, d	lestructive testing and practical background	nd of machines theor	y.

Course code.	Course Name	L-T-P - Credits	Year of Introduction
ME236	Machine shop	0-0-3-1	2016
Prerequisite: N	ME220 Manufacturing Technology		
Course Object	ives		
macl • To c	acquaint with the basic operations of nines. onduct the exercise involving plane turr ng, gear cutting and grinding operations.	NALAM	
List of exercise			
drill cylin 2. Plan 3. Grov 4. Thre 5. Exe 6. Mac 7. Mac 8. Exp 9. Rea 10. Exp splin 11. Exp 12. Cutt 13. Grir	eriment on vertical milling. ing of spur gear on milling machine. iding of plane surface using surface g	r, planning machine, slotting ool and cutter grinder. urning on lathe. h lathe. ving keyways using shaping hines. otting machine. g and boring operations. erations using drilling mach hilling, keyway cutting, and	g machine, g machines. ines.
	ndrical grinding using cylindrical grin	iding machine.	
i. (dents will be able to operate different machine tools using produce different part features to the c		
Text Books:			
 2. HMT, 3. Chapm 	ain, Production Technology, Khanna l Production Technology, Tata McGray aan, Workshop Technology Vol II, EL ajra Choudhury, Workshop Technolo	w Hill. LBS.	s & Publishers.

ME237 Prerequisite: Ni Course Objectiv	WELDING AND MACHINE TOOLS LAB	0-0-3-1	
-	1		2016
Course Objectiv			I
•	/es:		
• Pro	ovide practical experience on various machining ope	erations using Lath	e.
• Fa	miliarization with basics of welding.		
• Pro	ovide practical experience in carrying out welding.	$\Delta \Lambda \Lambda$	
1	I J MUDUL MIL	TATA T	
List of Exercise	s/ Experiments (Minimum 10 are mandatory)	CAL	
(a). Machine To	ols: I INHV/FD CITV	/	
1. Study of Pre	cision Tools and Measuring Instruments.		
<u>Equipment:</u>	Vernier Calliper, Micrometer, Surface Plate, Sur	rface Gauge, Slip	Gauge, Screw
Pitch Gauge	, Feeler Gauge, Dial Gauge, <mark>Sine</mark> Gauge, Plug Gau	ige, Straight edge	Gauge.
2. Study of No	menclature of Single Point Cutting Tool.		
-	HSS Single point cutting tool.		
3. Study of Cer	ntre Lathe.		
<u>Equipment:</u>	Centre Lathe.		
	owing lathe operations on a work piece for give	n dimensions :	
4. Plane Turnin	-		
	HSS Single point cutting tool (V-tool), Tool ho	older, Surface gai	ige, steel rule,
outside calli	per, Jenny calliper, and Vernier calliper.		
5. Step Turning	5		
	HSS Single point cutting tool (V-tool), Parting t	ool, Tool holder,	Surface gauge,
	tside calliper, Jenny calliper, and Vernier calliper.		
6. Grooving.			
	HSS Single point cutting tool (V-tool), Parting t	ool, Tool holder,	Surface gauge,
steel rule, oi	utside calliper, Jenny calliper, and Vernier calliper.		
7. Taper Turni	1g		
-	HSS Single point cutting tool (V-tool), Tool he	older Surface on	ioe steel rule
	per, Jenny calliper, Vernier calliper and double end	• •	
		-r	
8. Thread Cutt	ng.		
<u>Equipment:</u>	HSS Single point cutting tool (V-tool), Tool he	older, Surface gai	ıge, steel rule,
outside calli	per, Jenny calliper, Vernier calliper Centre gauge o	and thread pitch ga	uge.

(b) Welding:

- 9. Study of Welding Equipment and Procedures. <u>Equipment:</u> MMAW, MIG, TIG, SAW.
- 10. To study various types of welding joints and practice edge preparation. <u>Equipment:</u> Butt joint, Lap joint, T-Joint, Corner joint, Workpiece, File/Grinder, Wirebrush.
- 11. To Prepare a Single V-Butt Joint using Arc Welding Process. <u>Equipment:</u> Arc welding machine, Mild steel work pieces, Mild steel Electrodes, Electrode holder, Ground clamp, Flat nose tong, Face shield, Apron, Hand gloves, work table, Bench vice, Rough flat file, steel rule, wire brush, Try square, Bell peen hammer, chipping hammer, chisel, grinding machine.
- 12. To Prepare a Lap Joint using Arc Welding Process. <u>Equipment:</u> Arc Welding Machine, Mild Steel Work Pieces, Mild Steel Electrodes, Electrode Holder, Ground Clamp, Face Shield, Apron, Hand Gloves, Work Table, Bench Vice, Rough Flat File, Try Square, Bell Peen Hammer, Chipping Hammer, Chisel, Grinding Machine.
- 13. To Prepare a T Joint using Arc Welding Process <u>Equipment:</u> Arc Welding Machine, Mild Steel Work Pieces, Mild Steel Electrodes, Electrode Holder, Ground Clamp, Face Shield, Apron, Hand Gloves, Work Table, Bench Vice, Rough Flat File, Try Square, Bell Peen Hammer, Chipping Hammer, Chisel, Grinding Machine.
- 14. To prepare a Butt Joint Using TIG Welding Process. <u>Equipment:</u> TIG Welding Machine, Welding Cable With Earth Clamps, Gas Cooled TIG Welding Torch, Inert Argon Gas Hose Pipe, Tungsten Rod, Flow Meter, Mild Steel Work Pieces, Face Shield, Apron, Hand Gloves, Work Table, Bench Vice, Rough Flat File, Try Square, Ball Peen Hammer, Chipping Hammer, Chisel, Grinding Machine.
- 15. To prepare a Lap Joint Using TIG Welding Process. <u>Equipment:</u> TIG Welding Machine, Welding Cable With Earth Clamps, Gas Cooled TIG Welding Torch, Inert Argon Gas Hose Pipe, Tungsten Rod, Flow Meter, Mild Steel Work Pieces, Face Shield, Apron, Hand Gloves, Work Table, Bench Vice, Rough Flat File, Try Square, Bell Peen Hammer, Chipping Hammer, Chisel, Grinding Machine.
- 16. To Prepare a Butt Joint using MIG Welding Process. <u>Equipment:</u> MIG Welding Machine, Welding Cable With Earth Clamps, MIG Welding Torch, CO₂ Gas Flow Meter with Preheater, Contact Tips, Input Gas Hose Pipes, Mild Steel Work Pieces, Face Shield, Apron, Hand Gloves, Work Table, Bench Vice, Rough Flat File, Try Square, Bell Peen Hammer, Chipping Hammer, Chisel, Grinding Machine.
- 17. To Prepare a Lap Joint using MIG Welding Process. <u>Equipment:</u> MIG Welding Machine, Welding Cable With Earth Clamps, MIG Welding Torch,

CO₂ Gas Flow Meter With Preheater, Contact Tips, Input Gas Hose Pipes, Mild Steel Work Pieces, Face Shield, Apron, Hand Gloves, Work Table, Bench Vice, Rough Flat File, Try Square, Bell Peen Hammer, Chipping Hammer, Chisel, Grinding Machine.

18. To Prepare a T Joint using MIG Welding Process.

<u>Equipment:</u> MIG Welding Machine, Welding Cable With Earth Clamps, MIG Welding Torch, CO₂ Gas Flow Meter With Preheater, Contact Tips, Input Gas Hose Pipes, Mild Steel Work Pieces, Face Shield, Apron, Hand Gloves, Work Table, Bench Vice, Rough Flat File, Try Square, Bell Peen Hammer, Chipping Hammer, Chisel, Grinding Machine.

19. Demonstration of Submerged Arc Welding Process.

<u>Equipment:</u> Power Source, Welding Head Trolley, Welding Clamp With Earth Clamp, Welding Cable With Earth Lug, Control Cable, Track, Contact Tip, Contact Pole, Flux Hose, Flux Hopper.

Expected Outcome:

After successful completion of the course, the student will be able to:

- i. Machine the given specimen to required dimension using Lathe.
- ii. Demonstrate the principle of operation of MMAW, TIG, MIG & SAW.
- iii. Prepare specified type of joint using various welding processes.

Text Book(s):

- 1. O.P Khanna; Welding Technology; Dhanpat Rai Publications.
- 2. Acharkan. N.; Machine Tool Design Vol. 1 to 4, MIR Publication.
- 3. Chapman; Workshop Technology, Vol II, ELBS.

Course code	Course Name:	L-T-P- Credits	Year of Introduction
ME238	ADVANCED MACHINE TOOLS LAB	0-0-3-1	2016
Prerequisite:	Nil		
Course Obies	times.		
Course Object	ntroduction to various Machining process.		
	To familiarization with the fundamentals of CN	C Machine	A
	Fo introduce the student to CNC operations.		$\sqrt{1}$
	ses/ Experiments (Minimum 10 are mandato	ory)	
1. Bolt Maki <u>Equipmen</u>	ng on Lathe Machine <u>t:</u> Cutting Saw, Center Lathe, Pedestal Grinder l Holder, Center Drill, Live Center, Stock and I	, HSS Tool Bit	8 8
2	Drilling Machines. <u>:</u> Radial Drilling Machine.		
3. Study of N <u>Equipment</u>	Iomenclature of Drill Bit. <u>:</u> Drill Bit.		
<u>Equipment</u>	e Given Work Piece as Required. <u>t:</u> <i>Mild Steel Work Piece, Drill <mark>B</mark>it, Lot Drill Bi</i> Shaping Machines.	t, Drill Chuck.	
•	t: Shaper Machine.		
	n V- Machining on the Given Work Piece. <u>t:</u> Shaper Machine, Punching Machine, Steel R	Pule, Hammer,	Shaper Tool, Try Square.
	n U- <mark>Cut on the Given</mark> Work Piece. <u>t:</u> Shaper machine, Steel rule, Hammer, Shaper	r tool, Try Squa	ıre.
8. Study of S Equipment	lotting Machines2014t:Slotter.		
	Slot on the Given Work Piece. <u>t:</u> Slotting Machine, Steel rule, Hammer, Shape	er tool, Try Squ	uare.
	ternal Key Way Using Slotter. <u>t:</u> Slotting Machine, Steel Rule, Hammer, Shap	er Tool, Try Sq	uare.
•	Iilling Machines. <u>t:</u> Milling Machine.		

- 12. To Perform Plane Milling Operation on the Given Specimen. <u>Equipment:</u> Milling Machine, Work Piece, Steel Ruler.
- 13. To Make Spur Gear on a Given Work Piece. <u>Equipment:</u> Steel Rule, Milling Cutter, Spanner, Mandrel, Dog Carrier.
- 14. To make Bevel Gear on a Work Piece. <u>Equipment:</u> Steel Rule, Milling Cutter, Spanner, Mandrel, Dog Carrier.
- 15. Study and Demonstration of CNC Machine. <u>Equipment:</u> CNC Machine.
- 16. To Program and Run Milling Operation Using CNC Machine. <u>Equipment:</u> CNC Machine, Computer.
- 17. To Program and Execute Turning Operation Using CNC Lathe. <u>Equipment:</u> CNC Machine, Computer.
- 18. Study of Cutting Process. <u>Equipment:</u> Variety of Cutting Equipment.

19. Study of CNC Plasma Arc Cutting (working principle and procedure only).

Course Outcome:

Upon successful completion of the course, the student will be able to :

- i. Machine the given work piece to specified dimensions.
- ii. Understand the fundamentals of CNC machining.

Text Book(s):

- Chapman; Workshop Technology, Vol II; ELBS.
- HMT; Production Technology; Tata McGraw Hill.
- Yoram Koren; Numerical Control of Machine Tools; McGraw-Hill.
- Acharkan. N.; Machine Tool Design Vol. 1 to 4; MIR Publication.