| Reg No.: | Name:   |
|----------|---------|
| Keg 110  | rvanic. |

## APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

## SIXTH SEMESTER B.TECH DEGREE EXAMINATION. APRIL 2018

Course Code: EE 302

**Course Name: ELECTROMAGNETICS (EE)** 

Max. Marks: 100 Duration: 3 Hours

| PART A                                                |    |                                                                                                                                         |       |  |  |
|-------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
|                                                       |    | Answer all questions, each carries 5 marks.                                                                                             | Marks |  |  |
| 1                                                     |    | Obtain gradient of the functions:<br>a) $F = 5\rho^4 z^3 \sin \varphi$<br>b) $V = 10r^4 \sin \theta \cos \varphi$ .                     | (5)   |  |  |
| 2                                                     |    | Obtain the expression of electric filed due to different charge bodies.                                                                 | (5)   |  |  |
| 3                                                     |    | Find the magnetic flux crossing the portion of the conductor in the plane                                                               | (5)   |  |  |
|                                                       |    | $\emptyset = \pi/4$ defined by $0.01 \le \emptyset \le 0.05 \ m$ and $0 \le Z \le 2 \ m$ for a current of 2 A                           |       |  |  |
| 4                                                     |    | Explain about energy densities in electric and magnetic fields.                                                                         | (5)   |  |  |
| 5                                                     |    | Explain about Poynting theorem.                                                                                                         | (5)   |  |  |
| 6                                                     |    | Derive and Explain Uniform plane wave equation.                                                                                         | (5)   |  |  |
| 7                                                     |    | Define a) intrinsic impedance b) characteristic impedance.                                                                              | (5)   |  |  |
| 8                                                     |    | Write down the expression of transmission line parameters.                                                                              | (5)   |  |  |
|                                                       |    | PART B                                                                                                                                  |       |  |  |
| Answer any two full questions, each carries 10 marks. |    |                                                                                                                                         |       |  |  |
| 9                                                     | a) | Explain about the cylindrical coordinate system.                                                                                        | (3)   |  |  |
|                                                       | b) | Find the gradient of scalar function $V=\rho^2 \sin 2\theta$ in cylindrical coordinates and                                             | (7)   |  |  |
|                                                       |    | the directional derivative of the function in the direction of the vector $\vec{A} = \overline{a_p} + \overline{a_p}$                   |       |  |  |
|                                                       |    | at the point $(2, \pi/4, 0)$ .                                                                                                          |       |  |  |
| 10                                                    | a) | Explain about the physical significance of divergence of vector quantity.                                                               | (4)   |  |  |
|                                                       | b) | Derive the expression of electric field intensity due to sheet charge having                                                            | (6)   |  |  |
|                                                       |    | surface charge density $\sigma_{s C/m}^2$                                                                                               |       |  |  |
| 11                                                    | a) | Explain about the conservative field.                                                                                                   | (2)   |  |  |
|                                                       | b) | Determine the divergence of vector field                                                                                                | (8)   |  |  |
|                                                       |    | $1)P = x^2 yz\overline{a_x} + xy\overline{a_z}  2)Q = 1/r^2 \cos\theta \ \overline{a_r} + r\cos\theta \sin\theta \ \overline{a_\theta}$ |       |  |  |

## PART C Answer any two full questions, each carries 10 marks.

| 12 | a) | State and explain Ampere's circuit law.                                                             | (3) |
|----|----|-----------------------------------------------------------------------------------------------------|-----|
|    | b) | A current filament carries a current of 10 A in the a <sub>z</sub> direction on the z axis.         | (7) |
|    |    | Find $\vec{H}$ in rectangular system at point P(1.2.3) due to this filament if it extends           |     |
|    |    | from a)z = $-\infty$ to $+\infty$ b) 5 to $\infty$ .                                                |     |
| 13 | a) | Derive the expression of inductance of solenoid having N turns.                                     | (6) |
|    | b) | Explain the electric boundary conditions of two dielectric media.                                   | (4) |
| 14 | a) | Formulate the Maxwell's equation in differential form and point form in phasor                      | (7) |
|    |    | form.                                                                                               |     |
|    | b) | Explain the continuity equation.                                                                    | (3) |
|    |    | PART D                                                                                              |     |
| 15 | a) | Answer any two full questions, each carries 10 marks.  What is skin depth?                          | (3) |
|    | b) | Show that the power flow along a concentric cable is the product of voltage and                     | (7) |
|    |    | current using Poynting Theorem.                                                                     |     |
| 16 | a) | Explain group velocity and phase velocity.                                                          | (5) |
|    | b) | Derive the attenuation constant and phase shift constant for a perfect conductor.                   | (5) |
| 17 | a) | Explain about electromagnetic interference.                                                         | (4) |
|    | b) | A 9375 MHz uniform plane wave is propagating in polystyrene. If the                                 | (6) |
|    |    | amplitude of the electric field intensity is 20 V/m and the material is assumed                     |     |
|    |    | to be loss less find $\alpha$ , $\beta$ , $\lambda$ , intrinsic impedance, propagation constant and |     |
|    |    | amplitude of H                                                                                      |     |

\*\*\*