Course code	Course Name	L-T-P - Credits	Year of Introduction
EE363	Computer Organization and Architecture	3-0-0-3	2016

Prerequisite: Nil

Course Objectives

- To lay the foundation for the study of hardware organization of digital computers.
- To impart the knowledge on interplay between various building blocks of computer

Syllabus

Basic operational concepts, CPU structure, Arithmetic, Memory hierarchy, Input Output interfacing, Performance analysis, Design

Expected outcome.

• The students will gain general idea about the functional aspects of each building blocks in computer design

Text Book:

W. Stallings, Computer Organization and Architecture: Designing for Performance, 8th Ed., Pearson Education India.

References:

- 1. D. A. Patterson and J. L. Hennessy, Computer Organization and Design, 4th Ed., Morgan Kaufmann, 2008.
- 2. Hamacher, Vranesic&Zaky, Computer Organization, McGraw Hill
- 3. Heuring V. P. & Jordan H. F., Computer System Design & Architecture, Addison Wesely

Course Plan					
Module	Contents	Hours	Sem.E xamM arks		
I	Basic Structure of computers – functional units – Historical Perspective -Basic operational concepts – bus structures, Measuring performance: evaluating, comparing and summarizing performance	7	15%		
II	Memory locations and addresses – memory operations – instructions and instruction sequencing ,Instruction sets- RISC and CISC paradigms, Addressing modes	7	15%		
	FIRST INTERNAL EXAMINATION				
III	Computer arithmetic - Signed and unsigned numbers - Addition and subtraction - Logical operations - Constructing an ALU - Multiplication and division – faster versions of multiplication-floating point representation and arithmetic	7	15%		
IV	The processor: Building a data path - Simple and multi-cycle implementations - Microprogramming - Exceptions	6	15%		
	SECOND INTERNAL EXAMINATION				
V	Introduction to pipelining-pipeline Hazards, Memory hierarchy - Caches - Cache performance - Virtual memory - Common framework for memory hierarchies	7	20%		
VI	Input/output - I/O performance measures – I/O techniques - interrupts, polling, DMA; Synchronous vs. Asynchronous I/O; Controllers. Types and characteristics of I/O devices - Buses - Interfaces in I/O devices - Design of an I/O system END SEMESTER EXAM	8	20%		

QUESTION PAPER PATTERN:

Maximum Marks: 100 Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

2014