Course co	de Course Name	L-T-P Credit	- Y	Year of		
EE306	POWER SYSTEM ANALYSIS	3-0-0-3	3	2016		
Prerequisite: Nil						
Course Objectives						
• To enable the students to analyse power systems under normal and abnormal						
conditions.						
•	To understand the need for load flow analysis and different	ent meth	ods			
•	To understand power system modeling	AA	Л			
To understand the need for stability studies and their analysis						
Syllabus Per unit quantities - modeling of power system components - methods of analyzing faults in						
symmetrical and unsymmetrical case - load flow studies - Automatic Generation Control -						
Solution of	Swing equation - Methods of improving stability limits	ient 10	wei syster	ii stability		
Expected	outcome .					
The studen	ts will be able to:					
i	Analyse power systems under normal and abnormal co	onditions	5.			
ii	Carry out load flow studies under normal and abnormal co	nditions				
Reference	es:					
1. Cotton H. and H. Barber, Transmission & Distribution of Electrical Energy, 3/e, Hodder and Stoughton, 1978.						
2. Gu	ota B. R., <i>Power System Analysis and Design</i> , S. Chand, New	7 Delhi, 2	2006.			
3. Gu	ota J.B., Transmission & Distribution of Electrical Power, S.I.	K. Katari	ia & Sons,	2009.		
4. Ha	li Saadat, Power System Analysis, 2/e, McGraw Hill, 2002.					
5. Kothari D. P. and I. J. Nagrath, <i>Modern Power System Analysis</i> , 2/e, TMH, 2009.						
6. Kundur P., Power system Stability and Control, McGraw Hill, 199						
7. Soni, M.L., P. V. Gupta and U. S. Bhatnagar, <i>A Course in Electrical Power</i> , Dhanpat Rai & Sons New Delhi 1984						
8 Stevenson W D Elements of Power System Analysis 4/e McGraw Hill 1982						
9 Uppal S. L. and S. Bao. <i>Electrical Power Systems</i> Khanna Publishers 2009						
10 Wedby C. L. Electrical Power Systems, 22/2 New Age International 2004						
10. waunwa C. L., <i>Electrical Fower Systems</i> , 55/e, New Age International, 2004.						
II. weedy B. M., B. J. Cory, N. Jenkins, J. B. Ekanayake and G. Subac, <i>Electric Power System</i> , John Wiley & Sons 2012						
	Course Plan	-				
	course rian			Sem. Exam		
Module	Contents		Hours	Marks		
	Per unit quantities-single phase and three phase-selecti	ion of				
	base quantities -advantages of per unit system –changin	ng the	2			
Ι	base of per unit quantities-Simple problems.					
	modelling of power system components - single line diag	ram –		1501		
	impedances and sequence networks of generators transfo	rmers	3	15%		
	and transmission lines.					
	Methods of analyzing faults in symmetrical and unsymmetrical	etrical				
II	case- effects of faults - Power system faults - symmetry	etrical	0			
	faults - short circuit MVA - current limiting rea	ctors-	0	15%		

	Unsymmetrical faults - single line to ground, line to line, double line to ground faults -consideration of prefault current- problems.				
FIRST INTERNAL EXAMINATION					
III	Load flow studies – Introduction-types-network model formulation - formation of bus impedance and admittance matrix, Gauss-Siedel (two iterations), Newton-Raphson (Qualitative analysis only) and Fast Decoupled method (two iterations) - principle of DC load flow.	8	15%		
IV	Automatic Generation Control: Load frequency control: single area and two area systems - Automatic voltage control.	6	15%		
SECOND INTERNAL EXAMINATION					
V	Economic Operation - Distribution of load between units within a plant - transmission loss as a function of plant generation - distribution of load between plants - Method of computing penalty factors and loss coefficients.	5	20%		
	Unit commitment: Introduction — Constraints on unit commitments: Spinning reserve, Thermal unit constraints- Hydro constraints	2			
	Power system stability - steady state, dynamic and transient stability-power angle curve-steady state stability limit	3			
VI	Mechanics of angular motion-Swing equation – Solution of swing equation - Point by Point method - RK method - Equal area criterion application - Methods of improving stability limits.	5	20%		
END SEMESTED EXAM					

QUESTION PAPER PATTERN:

Est

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.