Course co	de Course Name	L-T-P -Credits	Year of Intr	oduction		
EE304	Advanced Control Theory	3-1-0-4	201	6		
	ite: EE303 Linear control systems					
Course O						
	provide a strong concept on the compensa	tor design and on a	dvanced cont	rol system		
analysis and design techniques						
	analyse the behaviour of discrete time system	ms and nonlinear co	ontrol systems.			
	A DI A DIDI II	1ZATA	N.A.			
Syllabus:	APAND	KALA	M			
Compensa	tor design-Frequency domain approach-roo	ot locus method-Tu	ning of P, Pl	and PID		
	State space analysis of systems-state feedb			ta control		
	onlinear systems-describing function-phase	plane-Lyapunov me	ethod.			
Expected		VIIY				
	On successful completion, students will have the ability to					
i. design compensators using classical techniques.						
ii.						
iii.	analyse the stability of discrete system and	nonlinear system.				
Text Boo				22		
	Hassan K Khalil, Nonlinear Systems, Pren			52.		
2	2. Kuo B.C, Analysis and Synthesis of Sampled Data Systems, Prentice Hall					
3	Publications. Nagarath I. J. and Gopal M., Control Syste	Engineering Wi	lay Eastarn 2	000		
4				008.		
5		-		2010		
	ok (Approved for use in the examination)			2010.		
Reference		•				
	. Alberto Isidori, Nonlinear Control System	ns Springer Verlag	1995			
2. Gibson J. E., F.B. Tuteur and J. R. Ragazzini, Control System Components, Tata						
2	McGraw Hill, 2013		stem compon	ento, 1 ata		
		Design Tata McG	raw Hill 2009	2		
3. Gopal M., Control Systems Principles and Design, Tata McGraw Hill, 2008.						
4. Jean-Jacques E. Slotine & Weiping Li, Applied Nonlinear Control, Prentice-Hall.,						
	NJ, 1991.					
	Course	Plan	2	0		
Module	Contents		Hours	Sem. Exam Marks		
	Types of controller- Feedforward-feedba	ck-cascade-P, PI a	ind			
т	PID. Compensator design: Realization of	compensators – 1	ag, 7	15%		
Ι	lead and lag-lead -Design of compensator u	sing bode plot.	/	1 J 70		
	Compensator design: Realization of comp					
II	and lag-lead. Design of compensator using	rootlocus. Design of	of 7	15%		
	P, PI and PID controller using Ziegler-Nich					
	FIRST INTERNAL EX	AMINATION				
	State space analysis of systems: Introduct					
III	state equation of linear continuous ti			15%		
111	representation of state equations. Phase v		cal	1.5 /0		
	forms of state representation-controllable,	observable, diago	nal			

	and Jordan canonical forms- solution of time invariant				
	autonomous systems, forced system-state transition matrix-				
	relationship between state equations and transfer function. Properties of state transition matrix-Computation of state				
	transition matrix using Laplace transform-Cayley-Hamilton				
	method. Conversion from canonical form to phase variable form.				
	te feedback controller design: Controllability & observability.		15%		
IV	State feed-back design via pole placement technique.				
	Sampled data control system: Pulse Transfer function-Stability of				
	sampled data system -Routh Hurwitz criterion and Jury's test.				
	Introduction to state-space representation of sampled data				
	systems.				
SECOND INTERNAL EXAMINATION					
	Nonlinear systems: Introduction - characteristics of nonlinear				
V	systems. Types of nonlinearities. Analysis through harmonic				
	linearisation - Determination of describing function of	7 hrs	20%		
	nonlinearities (relay, dead zone and saturation only) - application				
	of describing function for stability analysis of autonomous				
	system with single nonlinearity.				
	Phase Plane Analysis: Concepts- Construction of phase trajectories for nonlinear systems and linear systems with static				
	nonlinearities - Singular points – Classification of singular				
VI	points. Definition of stability- asymptotic stability and instability	7 hrs	20%		
	Liapunov methods to stability of linear and nonlinear, continuous				
	time systems.				
END SEMESTER EXAM					

QUESTION PAPER PATTERN:

Estd

Maximum Marks: 100

Exam Duration: 3Hourrs.

Part A: 8 compulsory questions.

One question from each module of Modules I - IV; and two each from Module V & VI.

Student has to answer all questions. (8 x5)=40

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.