A

Reg. No. : \qquad Name : \qquad

SECOND SEMESTER B.TECH. DEGREE EXAMINATION, MAY/JUNE 2016

 MA 102 : DIFFERENTIAL EQUATIONSMax. Marks : 100
Duration: 3 Hours

PART-A

Answer all questions and each question carries 3 marks.

1. Determine a linearly independent solution of the differential equation $\left(x^{2}+1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0$ if $y_{1}=x$ is solution.
2. Solve the differential equation $y^{I V}+6 y^{\prime \prime \prime}+9 y^{\prime \prime}=0$.
3. Find the particular integral of the differential equation $\left(D^{2}-2 D+1\right) y=x e^{x}$.
4. Solve by the method of variation parameters, $\left(D^{2}+4\right) y=\tan 2 x$.
5. Develop the Fourier series of $f(x)=x^{2}$ in $-2 \leq x \leq 2$.
6. Find the Fourier sine series of $f(x)=e^{x}$ in $0<x<1$.
7. Obtain the partial differential equation by eliminating f and g from $z=x f(y)+y g(x)$.
8. Solve the partial differential equation $\left(y^{2}+z^{2}\right) p-x y q+x z=0$.
9. Obtain the solution of the wave equation $\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}$ using method of separation of variables when the separation constant $k<0$.
10. Write any two assumptions involved in deriving one dimensional wave equation:
11. Find the steady state temperature distribution in a rod of length 20 cm if the ends of the rod are kept at $10^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$.
12. Solve $\frac{\partial u}{\partial t}=h \frac{\partial^{2} u}{\partial x^{2}}$ subject to the conditions $u(0, t)=u(1, t)=0$ for $t>0$ and $u(x, 0)=3 \sin n \pi x, 0<x<1$.

PART-B

Answer six questions - one full question from each Module.

Module-1

13. a) Reduce to first order and hence solve the ODE
i) $y^{\prime \prime}+\left(y^{\prime}\right)^{3} \cos y=0$ and
ii) $2 x y^{\prime \prime}=3 y^{\prime}$.
b) Solve the IVP $y^{\prime \prime}-2 y^{\prime}+5 y=0, y(0)=-3, y^{\prime}(0)=1$.

OR
14. a) Show that the functions x and $x \ln (x)$ are linearly independent (use Wronskian). Hence form an ODE for the given basis $\mathrm{x}, \mathrm{x} \ln (\mathrm{x})$.
b) Solve the IV Py ${ }^{\prime \prime}+0.2 y^{\prime}+4.01 \mathrm{y}=0, \mathrm{y} \cdot(0)=0, y^{\prime}(0)=2$.

Module-2

15. a) Solve the differential equation $(D+1)^{2} y=x^{2} e^{x}$.
b) Solve the differential equation $\left(x^{3} D^{3}+3 x^{2} D^{2}+x D+1\right) y=x+\log x$.

OR

16. a) Solve the differential equation $\left(D^{2}+1\right) y=x^{2} e^{x}+\sin x$.
b) Solve the differential equation $(x+1)^{2} y^{\prime \prime}+(x+1) y^{\prime}-y=2 \sin \log (x+1)$.
Module-3
17. a) Find the Fourier Series of $f(x)=\left\{\begin{array}{ll}x & , 0<x<1 \\ 1-x & , 1<x<2\end{array}\right.$.
b) Find the Fourier cosine series of $f(x)=x(\pi-x)$ in $0<x<\pi$.

OR
18. a) Expand $\mathrm{f}(\mathrm{x})=\mathrm{e}^{-\mathrm{x}}$ in $(-l, l)$ as a Fourier Series.
b) Find the half range sine series of $f(x)=x \sin x$ in $0<x<\pi$.

Module-4

19. a) Form the PDE by eliminating a, b, c from $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
b) Solve the partial differential equation $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial x \partial y}-2 \frac{\partial^{2} z}{\partial y^{2}}=e^{2 x+y}$.

OR
20. a) Solve : $x\left(y^{2}-z^{2}\right) p+y\left(z^{2}-x^{2}\right) q=z\left(x^{2}-y^{2}\right)$.
b) Solve the partial differential equation $\frac{\partial^{3} z}{\partial x^{3}}-4 \frac{\partial^{3} z}{\partial^{2} x \partial y}+4 \frac{\partial^{3} z}{\partial x \partial y^{2}}=\cos (2 x+y)$.

Module-5

21. A tightly stretched string of length ' a ' with fixed ends is initially in equilibrium position. Find the displacement $u(x, t)$ of the string if it is set vibrating by giving each of its points a velocity $v_{0} \sin (\pi x / a)$.

OR
22. A transversely vibrating string of length ' a ' is stretched between two points A and B. The initial displacement of each point of the string is zero and the initial velocity at a distance x from A is $\mathrm{kx}(\mathrm{a}-\mathrm{x})$. Find the form of the string at any subsequent time.

Module-6

23. Find the temperature in a laterally insulated bar of length L whose ends are kept
at temperature zero if the initial temperature is $f(x)=\left\{\begin{array}{ll}x & , 0<x<L / 2 \\ L-x & , L / 2<x<L\end{array}\right.$.

OR

24. An insulated rod of length L has its ends A and B maintained at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively until steady, state conditions prevails. If B is suddenly reduced to $0^{\circ} \mathrm{C}$ and maintained at $0^{\circ} \mathrm{C}$, then find the temperature in the rod at a distance x from A at time t.
