Reg No...... Name:....

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2016 (2015 ADMISSION)

Course Code: MA 101

Course Name: CALCULUS

Max. Marks: 100

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

Find the derivative of $y = (1 + x \cosh^{-1} x)^2$

- 2 Test the convergence of $\sum_{n=1}^{\alpha} \left(\frac{n}{n+1} \right)^{n^2}$
- 3 Classify the surface $4x^{2} + 4y^{2} + z^{2} + 8y 4z = 4$
- 4 Convert the rectangular co-ordinate into spherical co-ordinate of $(2, 2\sqrt{3}, -4)$
- 5 Prove that $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$ where $\mathbf{f} = \mathbf{x}^2 \mathbf{y}$.
- Find the velocity, acceleration and speed of a particle moving along the curve x=1+3t, y=3-4t, z=1+3t at z=2
- x = 1 + 3t, y = 3 4t, z = 1 + 3t at = 27 Given $z = e^{xy}$, x = 2u + v, $y = \frac{u}{v}$ Find $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$
- 8 Find the unit tangent vector and unit normal vector to the curve

 $x = e^{t} \cos t$, $y = e^{t} \sin t$, $z = e^{t} at t = 0$.

- 9 Evaluate $\int_{0}^{3} \int_{0}^{\sqrt{9-y^2}} 2y dx dy$
- Find the area of the region R enclosed between the parabola $y = \frac{x^2}{2}$ and the

line y = 2x

(10*3=30 Marks)

Page 1 of 3

PART B

(Answer any 2 questions each question carries 7 marks)

- Find the radius of curvature and interval of curvature of $\sum_{n=1}^{\alpha} \frac{x^n}{2n+3}$
- Test the convergence of $\frac{x}{1 \cdot 2} + \frac{x^2}{2 \cdot 3} + \frac{x^3}{3 \cdot 4} + \cdots \cdots$
- Determine the Taylor's series expansion of $f(x) = \sin x$ at $x = \pi/4$.

(Answer any 2 questions each question carries 7 marks)

Find the nature of domain of the following function

1.
$$f(x, y) = \sqrt{x^2 - y^2}$$

$$2. f(x, y) = \ln(x^2 - y)$$

- Show that the function $f(x,y) = \frac{x^3y}{2x^6 + y^2}$ approaches zero as $(x,y) \to (0,0)$ along the line y = mx.
- Find the trace of the surface $x^2 + y^2 z^2 = 0$ in the plane x = 2 and y = 1. $x^2 + y^2 z^2 = 0$ (Answer any 2 questions each question carries 7 marks)

- 17 Find the local linear approximation of $f(x, y) = \sqrt{(x^2 + y^2)}$ at (3,4) and compare the error in approximation by L(3.04,3.98) with the distance between the points.
- 18 Find the relative extrema of $f(x, y) = 3x^2 2xy + y^2 8y$

19 If
$$z = e^{xy}$$
, $x = 2u + v$, $y = \frac{u}{v}$ Find $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$

(Answer any 2 questions each question carries 7 marks)

- 20 If $r(t) = e^{t}i + e^{-2t}j + tk$
 - 1) Find the scalar tangential and normal component of acceleration at t = 0
 - 2) Find the vector tangential and normal component of acceleration at t = 0.
- Find the equation of the tangent plane and parametric equations of the normal

Page 2 of 3

line to the surface $z = 4x^3y^2 + 2y - 2$ at the point P (1, -2, 10).

Find the directional derivative of $f = x^2y - yz^3 + z$ at (1,-2,0) in the direction of $\vec{a} = 2\vec{i} + \vec{j} + 2\vec{k}$

(Answer any 2 questions each question carries 7 marks)

- Evaluate $\iint_R y dA$ where R is the region in the first quadrant enclosed between the circle $x^2 + y^2 = 25$ and the line x+y=5
- Change the order of integration and evaluate $\int_{1}^{2} \int_{y}^{y^{2}} dx dy$
- 25 Find the volume bounded by the cylinder $x^2 + y^2 = 4$ the planes y + z = 3 and z = 0.

