Course code	Course Name	L-T-P - Credits	Ye Intro	ear of duction		
CS367	Logic for Computer Science	3-0-0-3	2	2016		
Pre-requisites : CS205 Data Structures						
Course Objectives						
•	To introduce the concepts of mathematical logic and its imp	ortance.				
•	To discuss propositional, predicate, temporal and modal log	ic and their	applica	ations.		
Syllabus	ADIARDIII KALI	$\Lambda \Lambda \Lambda$				
Propositional Logic, Resolution, binary decision diagrams, Predicate logic, resolution, temporal						
logic, deduction, program verification, modal logic.						
Expected Outcome						
The stude	ents will be able to					
1. Gain the concept of logic and its importance.						
II. U	11. Understand fundamental concepts in propositional, predicate and temporal logic and apply					
	poly the concept of program verification in real world scenarion					
iv K	now the fundamental concepts in modal logic	105.				
Text Boo	ks					
1. A	rindhama Singh, Logics for Computer Science, Prentice Hall I	India, 2004.				
2. M	odechai Ben-Ari, Mathematical Logic for Computer Science,	Springer, 3/	e, 2012	2.		
Reference	e	1 0 /	,			
1. M	ichael Huth, Mark Ryan, Logic in Computer Science: Mode	eling and R	easonir	ng about		
S	stems, Cambridge University Press, 2005.			-		
Course Plan						
				End		
	Cantanta			Sem.		
Module	Contents	п	ours	Exam		
				Marks		
	Introductory Concepts: Mathematical Logic, Propositional	Logic,				
I	First Order Logic, Modal and Temporal logic, P	rogram				
	Verification. (Reading: Ben-Ari, Chapter 1)	1	xe, 06 15			
	Propositional Logic: Formulae and interpretations, Equiv	valence,				
	Completeness (Reading: Ban Ari Chapter 2 aver					
	Additional Reading · Singh Chanter 1)	<i>n</i> 2. - ,				
	The Hilbert Deductive System, Derived Rules, Theorem	ns and				
	operators, Soundness and Completeness, Consistency. (Re	eading:				
	Ben-Ari, Chapter 3 except 3.7 and 3.8, Additional Rea	ading :		15%		
II	Singh, Chapter 1)	U	06			
	Resolution in Propositional Logic: Conjunctive Normal	form,				
	Clausal form, resolution rule. (Reading: Ben-Ari, Chapt	er 4.1,				
4,2, 4.3, Additional Reading : Singh, Chapter 1)						
FIRST INTERNAL EXAM						
ш	Binary Decision Diagrams: Definition, Reduced and ordered	BDD,		150/		
	Operators. (Reading: Ben-Ari, Chapter 5.1 – 5.5)					
	Predicate Logic: Relations, predicates, formulae and interpre-	etation,	07	15%		
	logical equivalence, semantic tableaux, soundness. Keading	g: ben-				
	Ari, Chapter 7.1-7.6, Additional Reading : Singh, Chapter	r 2)				

IV	The Hilbert deduction system for predicate logic. Functions, PCNF and clausal form, Herbrand model. Resolution in predicate logic: ground resolution, substitution, unification, general resolution. Reading: Ben-Ari, Chapter 8.1-8.4, 9.1, 9.3, 10.1-10.4, Additional Reading : Singh, Chapter 2, Chapter 3)	08	15%	
SECOND INTERNAL EXAM				
V	Temporal logic: Syntax and semantics, models of time, linear time temporal logic, semantic tableaux. Deduction system of temporal logic. (Reading: Ben-Ari, Chapter 13.1-13.5, 14.1-14.2)	07	20%	
VI	Program Verification: Need for verification, Framework for verification, Verification of sequential programs, deductive system, verification, synthesis. (Reading: Ben-Ari, Chapter 15.1-15.4, Additional Reading : Singh, Chapter 5) Modal Logic: Need for modal logic, Case Study: Syntax and Semantics of K, Axiomatic System KC, (Reading: Singh, Chapter 6.1-6.3)	08	20%	
END SEMESTER EXAM				

Assignments: Some of the assignments can be given on an interactive theorem prover like Isabelle or Coq.

Question Paper Pattern

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules I and II; <u>Allfour</u> questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering modules I and II; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts.
- 4. Part C
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules III and IV; All<u>four</u> questions have to be answered.
- 5. Part D
 - a. Total marks : 18
 - b. <u>*Three*</u> questionseach having <u>9</u> marks, uniformly covering modules III and IV; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40
 - b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
 - c. A question can have a maximum of three sub-parts.

There should be at least 60% analytical/numerical questions.