| Course <br> code | Course Name | L-T-P- <br> Credits | Year of <br> Introduction |
| :---: | :---: | :---: | :---: |
| CS365 | OPTIMIZATION TECHNIQUES | $\mathbf{3 - 0 - 0 - 3}$ | $\mathbf{2 0 1 6}$ |
| Prerequisite: Nil |  |  |  |
| Course Objectives <br> • To build an understanding on the basics of optimization techniques. <br> - To introduce basics of linear programming and meta- heuristic search techniques. |  |  |  |

## Syllabus

Basics of Operations Research - Formulation of optimization problems - Linear Programming Transportation Problem - Assignment Problem - Network flow Problem - Tabu Search - Genetic Algorithm - Simulated Annealing - Applications.

## Expected Outcome

The Students will be able to
i. Formulate mathematical models for optimization problems.
ii. Analyze the complexity of solutions to an optimization problem.
iii. Design programs using meta-heuristic search concepts to solve optimization problems.
iv. Develop hybrid models to solve an optimization problem.

## Text Books

1. G. Zapfel, R. Barune and M. Bogl, Meta heuristic search concepts: A tutorial with applications to production and logistics, Springer, 2010.
2. Hamdy A. Taha, Operations Research - An introduction, Pearson Education, 2010.
3. Rao S.S., Optimization Theory and Applications, Wiley Eastern, 1984.

## References

1. Gass S. I., Introduction to Linear Programming, Tata McGraw Hill.
2. Goldberg, Genetic algorithms in Search, optimization and Machine Learning, Addison Wesley, 1989.
3. K. Deb, Optimization for engineering design - algorithms and examples, Prentice Hall of India, 2004.
4. Reeves C., Modern heuristic techniques for combinatorial problems, Orient Longman, 1993.

| COURSE PLAN |  |  |  |
| :---: | :---: | :---: | :---: |
| Module | Contents | Hours | End Sem. Exam Marks |
| I | Decision-making procedure under certainty and under uncertainty Operations Research-Probability and decision- making- Queuing or Waiting line theory-Simulation and Monte- Carlo Technique- Nature and organization of optimization problems- Scope and hierarchy of optimization- Typical applications of optimization. | 08 | 15\% |
| II | Essential features of optimization problems - Objective functionContinuous functions - Discrete functions - Unimodal functions Convex and concave functions, Investment costs and operating costs in objective function - Optimizing profitably constraints-Internal and external constraints-Formulation of optimization problems. Continuous functions - Discrete functions - Unimodal functions Convex and concave functions. | 07 | 15\% |


| FIRST INTERNAL EXAM |  |  |  |  |  |
| :---: | :--- | :--- | :--- | :---: | :---: |
| III | Necessary and sufficient conditions for optimum of unconstrained <br> functions-Numerical methods for unconstrained functions - One- <br> dimensional search - Gradient-free search with fixed step size. Linear <br> Programming - Basic concepts of linear programming - Graphical <br> interpretation-Simplex method - Apparent difficulties in the Simplex <br> method. | $\mathbf{0 6}$ | $\mathbf{1 5 \%}$ |  |  |
| IV | Transportation Problem, Loops in transportation table, Methods of <br> finding initial basic feasible solution, Tests for optimality. Assignment <br> Problem, Mathematical form of assignment problem, methods of <br> solution. | $\mathbf{0 6}$ | $\mathbf{1 5 \%}$ |  |  |
| V SECOND INTERNAL EXAM | Network analysis by linear programming and shortest route, maximal <br> flow problem. Introduction to Non-traditional optimization, <br> Computational Complexity - NP-Hard, NP-Complete. Tabu Search- <br> Basic Tabu search, Neighborhood, Candidate list, Short term and <br> Long term memory | $\mathbf{0 7}$ | $\mathbf{2 0 \%}$ |  |  |
| VI | Genetic Algorithms- Basic concepts, Encoding, Selection, Crossover, <br> Mutation. Simulated Annealing - Acceptance probability, Cooling, <br> Neighborhoods, Cost function. Application of GA and Simulated <br> Annealing in solving sequencing and scheduling problems and <br> Travelling salesman problem. | $\mathbf{0 8}$ | $\mathbf{2 0 \%}$ |  |  |
| END SEMESTER EXAM |  |  |  |  | Question Paper Pattern |

1. There will be five parts in the question paper - $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$
2. Part A
a. Total marks : 12
b. Four questions each having $\underline{3}$ marks, uniformly covering modules I and II; Allfour questions have to be answered.
3. Part B
a. Total marks : 18
b. Threequestions each having $\underline{9}$ marks, uniformly covering modules I and II; Two questions have to be answered. Each question can have a maximum of three subparts.
4. Part C
a. Total marks : 12
b. Four questions each having $\underline{3}$ marks, uniformly covering modules III and IV; Allfour questions have to be answered.
5. Part D
a. Total marks : 18
b. Threequestions each having $\underline{9}$ marks, uniformly covering modules III and IV;

Two questions have to be answered. Each question can have a maximum of three subparts
6. Part E
a. Total Marks: 40
b. Six questions each carrying 10 marks, uniformly covering modules V and VI ; four questions have to be answered.
c. A question can have a maximum of three sub-parts.
7. There should be at least $60 \%$ analytical/numerical questions.


