Course code	Course Name	L-T-P- Credits	Yea Intro	ar of Juction		
CS365	OPTIMIZATION TECHNIQUES	3-0-0-3	20)16		
Prerequisite: Nil						
 Course Objectives To build an understanding on the basics of optimization techniques. To introduce basics of linear programming and meta- heuristic search techniques. Syllabus 						
Basics of Operations Research - Formulation of optimization problems - Linear Programming - Transportation Problem - Assignment Problem - Network flow Problem - Tabu Search - Genetic Algorithm - Simulated Annealing – Applications						
Expected Outcome						
The Students will be able to						
i. Fo	rmulate mathematical models for optimization problems.					
$\begin{array}{ccc} 11. & A1\\ \vdots \vdots & D \end{array}$	Analyze the complexity of solutions to an optimization problem.					
iv De	iii. Design programs using meta-neuristic search concepts to solve optimization problems.					
Text Boo	ks					
 G. Zapfel, R. Barune and M. Bogl, Meta heuristic search concepts: A tutorial with applications to production and logistics, Springer, 2010. Hamdy A. Taha, Operations Research – An introduction, Pearson Education, 2010. Rao S.S., Optimization Theory and Applications, Wiley Eastern, 1984. 						
Referenc	es					
 Gass S. I., Introduction to Linear Programming, Tata McGraw Hill. Goldberg, Genetic algorithms in Search, optimization and Machine Learning, Addison Wesley, 1989. K. Deb, Optimization for engineering design – algorithms and examples, Prentice Hall of India, 2004. Reeves C., Modern heuristic techniques for combinatorial problems, Orient Longman, 1993 						
COURSE PLAN						
Module	Estd. Contents		Hours	End Sem. Exam Marks		
I	Decision-making procedure under certainty and under uno Operations Research-Probability and decision- making- Q Waiting line theory-Simulation and Monte- Carlo Techniqu and organization of optimization problems- Scope and his optimization- Typical applications of optimization.	certainty - Queuing or ue- Nature erarchy of	08	15%		
П	Essential features of optimization problems - Objective Continuous functions - Discrete functions - Unimodal for Convex and concave functions, Investment costs and opera in objective function - Optimizing profitably constraints-In external constraints-Formulation of optimization Continuous functions - Discrete functions - Unimodal for Convex and concave functions.	function- unctions - ating costs ternal and problems. unctions -	07	15%		

FIRST INTERNAL EXAM					
III	Necessary and sufficient conditions for optimum of unconstrained functions-Numerical methods for unconstrained functions - One- dimensional search - Gradient-free search with fixed step size. Linear Programming - Basic concepts of linear programming - Graphical interpretation-Simplex method - Apparent difficulties in the Simplex method.		15%		
IV	Transportation Problem, Loops in transportation table, Methods of finding initial basic feasible solution, Tests for optimality. Assignment Problem, Mathematical form of assignment problem, methods of solution.		15%		
SECOND INTERNAL EXAM					
V	Network analysis by linear programming and shortest route, maximal flow problem. Introduction to Non-traditional optimization, Computational Complexity – NP-Hard, NP-Complete. Tabu Search- Basic Tabu search, Neighborhood, Candidate list, Short term and Long term memory	07	20%		
VI	Genetic Algorithms- Basic concepts, Encoding, Selection, Crossover, Mutation. Simulated Annealing - Acceptance probability, Cooling, Neighborhoods, Cost function. Application of GA and Simulated Annealing in solving sequencing and scheduling problems and Travelling salesman problem.	08	20%		

END SEMESTER EXAM

Question Paper Pattern

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules I and II; All<u>four</u> questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. <u>Three</u>questions each having <u>9</u> marks, uniformly covering modules I and II; <u>Two</u> questions have to be answered. Each question can have a maximum of three subparts.
- 4. Part C
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules III and IV; All<u>four</u> questions have to be answered.
- 5. Part D
 - a. Total marks : 18
 - <u>Three</u>questions each having <u>9</u> marks, uniformly covering modules III and IV; <u>Two</u> questions have to be answered. Each question can have a maximum of three subparts

6. Part E

- a. Total Marks: 40
- b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
- c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical questions. Estd. 2014