Course code	Course Name	L-T-P Credits	Ye Intro	ear of oduction		
CS363	Signals and Systems	3-0-0-3	2	2016		
Pre-requisite: NIL						
Course Objectives						
• To	introduce fundamental concepts of continuous time and discret	ete time si	gnals.			
• To	introduce fundamental concepts of continuous time and discret	ete time sy	stems.			
• To introduce frequency domain representation and analysis of signals.						
Syllabus	M J MDDOL MIL	1 VI				
Signals an	d systems –basic operations on signals – continuous time an	d discrete	time s	signals –		
Continuou	s time and discrete time systems – properties of systems -	Z-transfo	rm – r	egion of		
convergen	ce – properties of Z-transform – inverse Z-transform. Fo	urier tran	storm	(FT) of		
discrete tir	(DET) Properties of PT – relation between Z-transform	and FI. I	Jiscrete	Podin 2		
EFT algor	(DFI) - Properties of DFI – inverse DFI - Fast Fourier tra	insform ()	FFI) -	Kadix-2		
FFT algor	unins – butterny structure. Digital inter structures –structures	S 101 11K	- Siluc	tures for		
Expected	Outcome					
The Stude	its will be able to					
i. Ide	entify different types of continuous time and discrete time sign	als.				
ii. Ide	entify different types of continuous time and discrete time syst	ems.				
iii. Ar	alyse signals using Z Transform and FT.					
iv. Ar	alyse signals using DFT and FFT.					
v. Ap	preciate IIR digital filter structures.					
vi. Ap	preciate FIR digital filter structures.					
Text Books						
1. M.	N. Bandyopadhyaya, Introduction to Signals and Systems and	l Digital S	lignal			
Processing, PHI, 2005.						
2. S.L	D. Apte, Digital Signal Processing, Wiley India, 2012.					
Reference	S	-				
1. A.	A. Ambardar, Digital Signal Processing: A Modern Introduction, Thomson India Edition,					
200						
2. A. V	V. Oppenneim and R. W. Schafer, Discrete Time Signal Proces	ssing (Pre	ntice F	lall		
Signal Processing Series), 3e, Pearson, 2009.						
J. D. Per	Gallesii Rao aliu V. F. Gejji, Digital Signal Flocessing Theory	allu Lau	FIACUL	с,		
4 IK Proakis and D.G. Manolakis. Introduction to Digital Signal Processing MacMillan						
4. J.K. FIORKIS and D.O. Manolakis, introduction to Digital Signal Processing, MacMillan, 1989						
5 Li Tan, Digital Signal Processing Fundamentals and Applications, Elsevier, 2013						
6. M. H. Haves, Digital Signal Processing, McGraw Hill (SCHAUM'S Outlines) 2011						
7. P. Ramesh Babu, Digital Signal Processing, Scitech Publications, 2012.						
8. S.K. Mitra, Digital Signal Processing, McGraw Hill Education, 2013.						
9. S.W. Smith, Digital Signal Processing : A Practical Guide for Engineers and Scientists,						
Elsevier India.						
Course Plan						
				End		
Module	Contents		Hours	Sem.		
		–		Exam		
				Marks		

	Signals and systems – introduction – basic operations on signals –			
Ι	continuous time and discrete time signals -step, impulse, ramp,	07	15 %	
	exponential and sinusoidal functions.			
	Continuous time and discrete time systems -properties of systems			
II	– linearity, causality, time invariance, memory, stability,	07	15 %	
	invertibility. Linear time invariant systems – convolution.			
FIRST INTERNAL EXAM				
III	Z-transform – region of convergence – properties of Z-transform –		15 %	
	inverse Z-transform. Fourier transform (FT) of discrete time			
	signals – properties of FT – relation between Z-transform and FT.	07		
	TECHNIQUOQUCAL	07	15 /0	
	Discrete Fourier transform (DFT) - Properties of DFT – inverse			
IV	DFT - Fast Fourier transform (FFT) - Radix-2 FFT algorithms –	07	15 %	
	butterfly structure.			
SECOND INTERNAL EXAM				
	Digital filter structures – block diagram and signal flow graph			
V	representation – structures for IIR – direct form structure –	07	20 %	
	Cascade form structure – parallel form structure – lattice structure.			
	Structures for FIR – direct form structures – direct form structure			
VI	of linear phase system – cascade form structure – frequency	07	20 %	
	sampling structure – lattice structu <mark>re</mark> .			
END SEMESTER FXAM				

Question Paper Pattern

1. There will be *five* parts in the question paper – A, B, C, D, E

- 2. Part A
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules I and II;All<u>four</u> questions have to be answered.

3. Part B

- a. Total marks : 18
- <u>*Three*</u>questions each having <u>9</u> marks, uniformly covering modules I and II;
 <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts

4. Part C

- a. Total marks : 12
- b. <u>Four</u>questions each having <u>3</u> marks, uniformly covering modules III and IV; All<u>four</u> questions have to be answered.

5. Part D

- a. Total marks : 18
- b. <u>Three</u>questions each having <u>9</u> marks, uniformly covering modules III and IV;<u>Two</u>questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40
 - b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
 - c. A question can have a maximum of three sub-parts.

There should be at least 60% analytical/numerical questions