Course code	Course Name	L-T-P Credits		ear of duction
CS361	SOFT COMPUTING	3-0-0-3	2	2016
	Prerequisite: Nil			
Syllabus Introduct Genetic A	 Dbjectives To introduce the concepts in Soft Computing such as A Fuzzy logic-based systems, genetic algorithm-based system to Soft Computing, Artificial Neural Networks, Fuzzy Algorithms, hybrid systems. I Outcome 	stems and t	heir hyt	orids.
1. Le 2. A 3. D 4. U 5. Id a	ents will be able to earn soft computing techniques and their applications. nalyze various neural network architectures. efine the fuzzy systems. nderstand the genetic algorithm concepts and their application entify and select a suitable Soft Computing technology to so solution and implement a Soft Computing solution.		oblem; c	construct
20	ks N. Sivanandam and S. N.Deepa, Principles of soft comput 007. imothy J. Ross, Fuzzy Logic with engineering applications, J	-		
A 2. Si In 3. R M 4. D N 5. B 19 6. G	 K. Sinha and M. M. Gupta, Soft Computing & Intell pplications-Academic Press /Elsevier. 2009. mon Haykin, Neural Network- A Comprehensive Fotternational, Inc. 1998 Eberhart and Y. Shi, Computational Intelligence: Corforgan Kaufman/Elsevier, 2007. riankov D., Hellendoorn H. and Reinfrank M., An Introdarosa Pub., 2001. art Kosko, Neural Network and Fuzzy Systems- Prentice Habitation Distribution (Section 1992) oldberg D.E., Genetic Algorithms in Search, Optimization (Markov 1989). 	oundation- ncepts to 2 luction to all, Inc., Er	Prenti Implem Fuzzy nglewoo	ce Hall entation, Control- d Cliffs,
	Course Plan			
Module	Contents		Hours	End Sem. Exam Marks
Ι	Introduction to Soft Computing Artificial neural networks - biological neurons, Basic me artificial neural networks - Connections, Learning, Ac Functions, McCulloch and Pitts Neuron, Hebb network.		07	15%
II	Perceptron networks – Learning rule – Training and algorithm, Adaptive Linear Neuron, Back propagation Ne Architecture, Training algorithm	-	07	15%
	Architecture, Training algorithm FIRST INTERNAL EXAM			

III	fuzzy relations - operations on fuzzy relations	07	15%
IV	Fuzzy membership functions, fuzzification, Methods of membership value assignments – intuition – inference – rank ordering, Lambda – cuts for fuzzy sets, Defuzzification methods	07	15%
	SECOND INTERNAL EXAM		<u>.</u>
V	Truth values and Tables in Fuzzy Logic, Fuzzy propositions, Formation of fuzzy rules - Decomposition of rules – Aggregation of rules, Fuzzy Inference Systems - Mamdani and Sugeno types, Neuro-fuzzy hybrid systems – characteristics - classification	07	20%
VI	Introduction to genetic algorithm, operators in genetic algorithm - coding - selection - cross over – mutation, Stopping condition for genetic algorithm flow, Genetic-neuro hybrid systems, Genetic- Fuzzy rule based system		20%

Question Paper Pattern

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks : 12
 - b. <u>Four</u>questions each having <u>3</u> marks, uniformly covering modules I and II; All<u>four</u> questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. <u>*Three*</u>questions each having <u>9</u> marks, uniformly covering modules I and II; T<u>wo</u> questions have to be answered. Each question can have a maximum of three sub-parts
- 4. Part C
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules III and IV;All<u>four</u> questions have to be answered.

Estd.

- 5. Part D
 - a. Total marks : 18
 - b. <u>*Three*</u>questions each having <u>9</u> marks, uniformly covering modules III and IV; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40
- 2014
- b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
- c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical/design questions.