Course code	Course Name L-Cre	T-P edits	Yea Introd	r of uction			
CS309	GRAPH THEORY AND COMBINATORICS 2-0	-2-3	20	16			
Prerequisite: Nil							
Course Objectives							
• To introduce the fundamental concepts in graph theory, including properties and							
characterization of graphs/ trees and Graphs theoretic algorithms							
Syllabus	APLABELL KALA	M					
Introductory concepts of graphs, Euler and Hamiltonian graphs, Planar Graphs, Trees, Vertex							
connectivity and edge connectivity, Cut set and Cut vertices, Matrix representation of graphs,							
Graphs theoretic algorithms.							
Expected Outcome							
i Demonstrate the knowledge of fundamental concents in graph theory including							
properties and characterization of graphs and trees							
ii. Use	Use graphs for solving real life problems.						
iii. Dist	ii. Distinguish between planar and non-planar graphs and solve problems.						
iv. Dev	elop efficient algorithms for graph related problems in	differe	ent dom	ains of			
eng	ineering and science.						
Text Book	5						
1. Do	uglas B. West, Introduction to Graph Theory, Prentice Hall India	a Ltd.,	2001				
2. Nai	asingh Deo, Graph theory, PHI, 1979.						
3. Ro	oin J. Wilson, Introduction to Graph Theory, Longman Group L	td., 20	10				
References							
I. R. I	Diestel, Graph Theory, free online edition, 2016: diestel-graph-th	neory.	com/basi	c.html.			
	Course Plan			E J			
				Ena Som			
Module	Contents		Hours	Sem. Evam			
				Marks			
	Introductory concepts - What is graph – Application of grap	ohs –					
	finite and infinite graphs – Incidence and Degree – Isolated ve	ertex,					
Ι	pendent vertex and Null graph. Paths and circuits - Isomorph	nism,	09	15 %			
	sub graphs, walks, paths and circuits, Connected graphs, discor	nnect					
	graphs.						
	Euler graphs, Hamiltonian paths and circuits, Dirac's theorem	n for					
	Hamiltonicity, Travelling salesman problem. Directed grap	hs –					
11	types of digraphs, Digraphs and binary relation		10	1 = 0 (
			10	15 %			
 	FIKST INTERNAL EXAM	oted					
тт	and binary tree, counting trees, spanning trees	olea	07	15 0/			
111	and binary nee, counting nees, spanning nees.		07	15 70			
	Vertex Connectivity Edge Connectivity Cut set and Cut Vert	ices					
	Fundamental circuits, Planar graphs. Different representation	n of					
IV	planar graphs, Euler's theorem. Geometric dual. Combinat	orial					
	dual.		09	15 %			
SECOND INTERNAL EXAM							

V	Matrix representation of graphs- Adjacency matrix, Incidence Matrix, Circuit matrix, Fundamental Circuit matrix and Rank, Cut				
	set matrix, Path matrix	08	20 %		
	Graphs theoretic algorithms - Algorithm for computer				
VI	representation of a graph, algorithm for connectedness and	07	20 %		
	components, spanning tree, shortest path.				
FND SEMESTER FXAM					

Question Paper Pattern

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules I and II; All<u>four</u> questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering modules I and II; \underline{Two} questions have to be answered. Each question can have a maximum of three subparts.
- 4. Part C
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules III and IV; All<u>four</u> questions have to be answered.
- 5. Part D
 - a. Total marks : 18
 - b. <u>*Three*</u>questions each having <u>9</u> marks, uniformly covering modules III and IV; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts.
- 6. Part E
 - a. Total Marks: 40
 - b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.

2014

- c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical questions.