Course code	Course Name	$\begin{gathered} \hline \text { L-T-P } \\ \text { Credits } \end{gathered}$	Year of Introduction	
CS309	GRAPH THEORY AND COMBINATORICS	2-0-2-3	2016	
Prerequisite: Nil				
Course O	jectives - To introduce the fundamental concepts in graph th characterization of graphs/ trees and Graphs theoretic	, includi gorithms	g prope	ties and
Syllabus Introduc connecti Graphs	concepts of graphs, Euler and Hamiltonian graphs, and edge connectivity, Cut set and Cut vertices, Ma etic algorithms.	s, Trees, Vertex tation of graphs,		
Expected Outcome The Students will be able to i. Demonstrate the knowledge of fundamental concepts in graph theory, including properties and characterization of graphs and trees. ii. Use graphs for solving real life problems. iii. Distinguish between planar and non-planar graphs and solve problems. iv. Develop efficient algorithms for graph related problems in different domains of engineering and science.				
Text Books 1. Douglas B. West, Introduction to Graph Theory, Prentice Hall India Ltd., 2001 2. Narasingh Deo, Graph theory, PHI, 1979. 3. Robin J. Wilson, Introduction to Graph Theory, Longman Group Ltd., 2010				
References 1. R. Diestel, Graph Theory, free online edition, 2016: diestel-graph-theory.com/basic.html.				
Course Plan				
Module	Contents		Hours	End Sem. Exam Marks
I	Introductory concepts - What is graph - Application finite and infinite graphs - Incidence and Degree - Iso pendent vertex and Null graph. Paths and circuits - I sub graphs, walks, paths and circuits, Connected graph graphs.	graphs vertex, orphism, isconnect	09	15 \%
II	Euler graphs, Hamiltonian paths and circuits, Dirac's Hamiltonicity, Travelling salesman problem. Direct types of digraphs, Digraphs and binary relation	orem for graphs -	10	15 \%
FIRST INTERNAL EXAM				
III	Trees - properties, pendent vertex, Distance and cent and binary tree, counting trees, spanning trees.	Rooted	07	15 \%
IV	Vertex Connectivity, Edge Connectivity, Cut set and Fundamental circuits, Planar graphs, Different repre planar graphs, Euler's theorem, Geometric dual, C dual.	Vertices, tation of binatorial	09	15 \%

V	Matrix representation of graphs- Adjacency matrix, Incidence Matrix, Circuit matrix, Fundamental Circuit matrix and Rank, Cut set matrix, Path matrix	$\mathbf{0 8}$	$\mathbf{2 0} \%$		
VI	Graphs theoretic algorithms - Algorithm for computer representation of a graph, algorithm for connectedness and components, spanning tree, shortest path.	$\mathbf{0 7}$	$\mathbf{2 0} \%$		
END SEMESTER EXAM					

Question Paper Pattern

1. There will be five parts in the question paper - $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$
2. Part A
a. Total marks : 12
b. Four questions each having $\underline{3}$ marks, uniformly covering modules I and II; Allfour questions have to be answered.
3. Part B
a. Total marks : 18
b. Threequestions each having $\underline{9}$ marks, uniformly covering modules I and II; Two questions have to be answered. Each question can have a maximum of three subparts.
4. Part C
a. Total marks : 12
b. Four questions each having $\underline{3}$ marks, uniformly covering modules III and IV; Allfour questions have to be answered.
5. Part D
a. Total marks : 18
b. Threequestions each having $\underline{9}$ marks, uniformly covering modules III and IV; Two questions have to be answered. Each question can have a maximum of three subparts.
6. Part E
a. Total Marks: 40
b. Six questions each carrying 10 marks, uniformly covering modules V and VI; four questions have to be answered.
c. A question can have a maximum of three sub-parts.
7. There should be at least 60% analytical/numerical questions.
