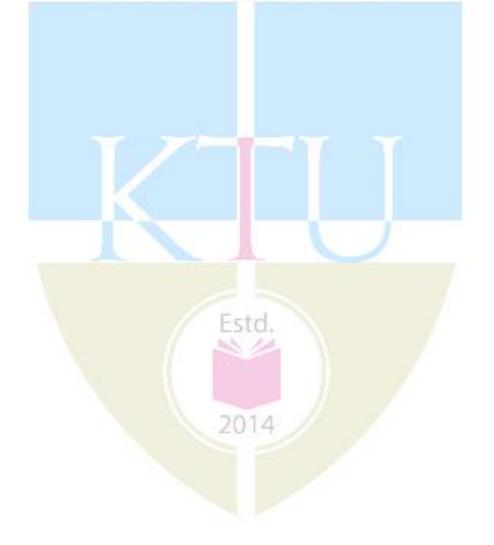
Course code	Course Name	L-T-P - Credits		ar of duction
CS302	Design and Analysis of Algorithms	3-1-0-4	2	016
	Prerequisite: Nil		L	
 To To Syllabus Introduction Notations, illustrative Divide and Bound, Co Expected The stude ii. iii. iv. v. 	bjectives introduce the concepts of Algorithm Analysis, Time Complet discuss various Algorithm Design Strategies with proper illu- introduce Complexity Theory. on to Algorithm Analysis, Notions of Time and Space Recurrence Equations and their solutions, Master's Theorem examples, AVL trees, Red-Black Trees, Union-find algo- d Conquer, Dynamic Programming, Greedy Strategy, Back omplexity classes I outcome ents will be able to Analyze a given algorithm and express its time and space notations. Solve recurrence equations using Iteration Method, Rec Master's Theorem. Design algorithms using Divide and Conquer Strategy. Compare Dynamic Programming and Divide and Conquer Solve Optimization problems using Greedy strategy.	e Complexi n, Divide ar orithms, Gr a Tracking a complexitie currence Tracking Strategies.	mples. aty, As ad Cond aph alg and Bra es in as ee Met	ymptotic quer and gorithms, anch and ymptotic hod and
vi. vii.	Design efficient algorithms using Back Tracking and Brasolving problems. Classify computational problems into P, NP, NP-Hard and N			iques for
Pre 2. Th Alg Reference 1. Alf Co 2. An Ed	oks is Horowitz, SartajSahni, SanguthevarRajasekaran, Comput ess, 2007 [Modules 3,4,5] omas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Cl gorithms, MIT Press, 2009 [Modules 1,2,6]	er Algorith ifford Stein he Design a Algorithm	ms, Un , Introd and An s, Pear	uction to alysis of son, 3rd
4. Ric	chard E. Neapolitan, Kumarss Naimipour, Foundations Juedocode, Second Edition, 1997.			
	Course Plan			
Module	Contents	E	Iours	End Sem. Exam Marks


I	Introduction to Algorithm AnalysisElementary operations and Computation of Time Complexity-Best, worst and Average Case Complexities-ComplexityCalculation of simple algorithmsRecurrence Equations:Solution of Recurrence EquationsIteration Method and Recursion Tree Methods	04 04	15 %
Π	<i>Master's Theorem</i> (Proof not required) – examples, Asymptotic Notations and their properties- Application of Asymptotic Notations in Algorithm Analysis- Common Complexity Functions <i>AVL Trees</i> – rotations, Red-Black Trees insertion and deletion (Techniques only; algorithms not expected). B-Trees – insertion and deletion operations. Sets- Union and find operations on disjoint sets.	05 05	15%
	FIRST INTERNAL EXAM		1
III	<i>Graphs</i> – DFS and BFS traversals, complexity, Spanning trees – Minimum Cost Spanning Trees, single source shortest path algorithms, Topological sorting, strongly connected components.	07	15%
IV	 Divide and Conquer: The Control Abstraction, 2 way Merge sort, Strassen's Matrix Multiplication, Analysis Dynamic Programming : The control Abstraction- The Optimality Principle- Optimal matrix multiplication, Bellman-Ford Algorithm 	04 05	15%
	SECOND INTERNAL EXAM		
V	Analysis, Comparison of Divide and Conquer and Dynamic Programming strategies <i>Greedy Strategy:</i> - The Control Abstraction- the Fractional Knapsack Problem, Minimal Cost Spanning Tree Computation- Prim's Algorithm – Kruskal's Algorithm.	02 04 03	20%
VI	Back Tracking: -The Control Abstraction – The N Queen's Problem, 0/1 Knapsack Problem Branch and Bound: Travelling Salesman Problem. Introduction to Complexity Theory :-Tractable and Intractable Problems- The P and NP Classes- Polynomial Time Reductions - The NP- Hard and NP-Complete Classes	03 03 03	20%

Question Paper Pattern

2014

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules I and II; All<u>four</u> questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering modules I and II; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts.
- 4. Part C

- a. Total marks : 12
- b. *Four* questions each having <u>3</u> marks, uniformly covering modules III and IV; All*four* questions have to be answered.
- 5. Part D
 - a. Total marks : 18
 - b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering modules III and IV; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40
 - b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
 - c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical questions.

