F	T7934	
D. M	N	

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SEVENTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

Course Code: CE463 Course Name: BRIDGE ENGINEERING

Max. Marks: 100 **Duration: 3 Hours**

(Use of IS 456, SP 16, IRC 6,18,21,83,112 and design charts may be permitted)

PART A Answer any two full questions, each carries 15 marks.						
1	a)	What are the considerations in determining the effect of wind loads?	(7)			
	b)	Explain the longitudinal forces acting on bridges.	(8)			
2	a)	What are the factors to be considered while selecting suitable site for a bridge.	(8)			
_	b)	Write the IRC specifications for Road bridges.	(7)			
3	a)	Explain the classification of bridges.				
,	b)	Write a note on the importance of impact factor in the design of bridges?	(8) (7)			
	U)	PART B	(1)			
Answer any two full questions, each carries 15 marks.						
4	a)	Explain the design principles of box culvert.	(10)			
	b)	Explain the 'Effective width method' in the design of slab bridges.	(5)			
5		Design a solid slab bridge required for a highway road having the following data.	(15)			
		Width of carriage way = 7.5 m				
		Clear Span = $5m$				
		Loading = IRC Class A				
		Width of Kerb = 600 mm				
		Materials = M 30 concrete and Fe 415 grade steel.				
6		Design the intermediate longitudinal girder of a T beam and slab bridge for the	(15)			
		following data:				
		Effective span = 10 m				
		Carriage way width = 7.5m				
		Kerb = 600mm width on either side				
		Provide three longitudinal beams				
		Loading = IRC Class A vehicle				
		Adopt M30 concrete and Fe 415 grade steel. Shear check is not required.				
	PART C					

PART C

Answer any two full questions, each carries 20 marks.

7 a) Discuss the design principles of a prestressed concrete bridge with neat sketches. (10) F T7934 Pages: 2

b) What are the types of foundations in bridges? Explain any one in detail with neat (10) sketches.

8 a) Design an elastomeric pad bearing for a two lane reinforced concrete T-beam (15) bridge for 15 m effective span having the following data:

Vertical sustained load- 300 kN

Vertical dynamic load- 60 kN

Horizontal sustained load- 80 kN

Coefficient of friction = 0.65

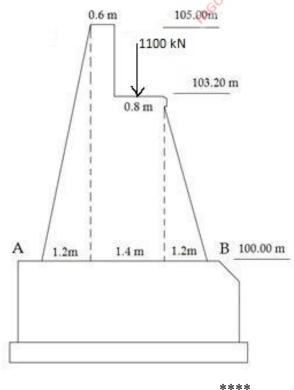
Modulus of rigidity-1 N/mm²

M 20 grade concrete.

- b) Write brief note on elastomeric bearings. (5)
- 9 Verify the stability of abutment. The salient details are given below. (20)

Material of the abutment: Concrete

Live load: IRC AA (Tracked)


Density = 18 kN/m^3

Angle of repose = 30

Coefficient of friction = 0.6

Span of bridge = 15 m

Angle of friction between soil and concrete = 18

