Reg N	0.:	Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION, APRIL 2018

Course Code: EE304

Course Name: ADVANCED CONTROL THEORY (EE)

Max. Marks: 100 Duration: 3 Hours

PART A

Answer all questions, each carries 5 marks. Marks

- What is a lag compensator? Draw its pole-zero plot and the frequency response (5) characteristics.
- 2 Explain the effects of adding PID controller to a system. (5)
- Selecting $i_1(t) = x_1(t)$ and $i_2(t) = x_2(t)$ as sate variables obtain state equation and output equation of the network shown in Fig. 1 (5)

Fig.1

- The characteristic polynomial of certain sampled data system is given by $P(z) = z^4 1.2z^3 + 0.07z^2 + 0.3z 0.08 = 0, \text{ test the stability of the system using}$ Jury's stability test.
- 5 Explain different non linearities with diagram. (5)
- What is limit cycle? How will you determine stable and unstable limit cycle using (5) phase portrait?
- What are singular point? Explain the types of singular point. (5)
- 8 Determine given quadratic form is positive definite or not (5)
 - $V(x) = 10x_1^2 + 4x_2^2 + x_3^2 + 2x_1x_2 2x_2x_3 4x_1x_3$

PART B

Answer any two full questions, each carries 10 marks.

9 a) For a feedback system shown in Fig. 2, design suitable compensator so that phase (10) margin is 40° and steady state error for ramp input ≤ 0.2

Fig. 2

- Design a suitable compensator for the system with open-loop transfer function $G(s)H(s) = \frac{1}{s(s+1)(s+2)}$ so that the over shoot to a unit step input to be limited to 20% and the transient to be settled with in 3s.
- 11 a) Briefly explain Ziegler Nichol's PID tuning rules.
 - b) Write the design steps of lead compensator based on frequency domain approach. (4)

PART C

Answer any two full questions, each carries 10 marks.

Find the complete response of the system

(10)

(6)

$$\overset{\bullet}{x} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x + \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} U(t), x(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

and $y(t) = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} x$ to the following input, $U(t) = \begin{bmatrix} u(t) \\ e^{3t}u(t) \end{bmatrix}$ where u(t) is the unit step input.

13 a) Transform the system in to controllable canonical form

(7)

(3)

(7)

$$\dot{x} = \begin{bmatrix} -1 & 1 \\ 0 & 2 \end{bmatrix} x + \begin{bmatrix} 2 \\ 1 \end{bmatrix} u \text{ and } y = \begin{bmatrix} 1 & 2 \end{bmatrix} x$$

- b) State and explain sampling theorem
- 14 a) Consider a system defined by

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -3 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u \text{ and } y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

Using state feedback control u=-Kx, it is desired to have the closed loop poles at s=-3 and, s=-4, determine the state feedback gain matrix K.

b) What is pulse transfer function?

(3)

PART D

Answer any two full questions, each carries 10 marks.

- Obtain the describing function of saturation non-linearity (10)
- A common form of an electronic oscillator is represented as shown in Fig. 3. For (10) what value of K, the possibility of limit cycle predicted? If K=3, determine amplitude and frequency of limit cycle. Also find the maximum value of K for the

(10)

system is stable.

В

Fig. 3

17 A second order system is represented by $\dot{x} = Ax$ where

$$A = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$$

Assuming matrix Q to be identity matrix, solve for matrix P in the equation $A^TP+PA=-Q$. Use Lyapunov theorem and determine the stability of the system. Write the Lyapunov function V(x)

