\qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SECOND SEMESTER B.TECH DEGREE EXAMINATION, JULY 2018

Course Code: MA102

Course Name: DIFFERENTIAL EQUATIONS

Max. Marks: 100
Duration: 3 Hours

PART A

Answer all questions, each carries 3 marks
Consider the initial value problem $y^{\prime \prime}-x^{3} y^{\prime}+6 x y=\sin x, y(0)=3, y^{\prime}(0)=-1$.
Can this problem have unique solution in an interval containing zero? Explain.

10 A string of length l fastened at both ends. The midpoint of the string is taken to a height h and then released from rest in that position. Write the boundary conditions and initial conditions of the string to find the displacement function $y(x, t)$ satisfying the one dimensional wave equation.
11 Write the fundamental postulates used in the derivation of one dimensional heat equation.
Define steady state condition in one dimensional heat equation $\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}$.
PART B
Answer six questions,one full question from each module Module 1
13 a) Discuss the existence and uniqueness of solution of the initial value problem

$$
\begin{equation*}
\frac{d y}{d x}=\frac{y}{\sqrt{x}}, y(1)=3 . \tag{6}
\end{equation*}
$$

b) Prove that $y_{1}(x)=e^{x}$ and $y_{2}(x)=e^{4 x}$ form a fundamental system(basis) for the
differential equation $y^{\prime \prime}-5 y^{\prime}+4 y=0$. Can $5 e^{x}-2 e^{4 x}$ be a solution(do not use verification method) of the differential equation? Explain.

OR
14 a) Discuss the existence and uniqueness of solution of the initial value problem

$$
\begin{equation*}
\frac{d y}{d x}=x^{2}+y^{2}, y(0)=1 \text { in the rectangle }|x| \leq 1,|y-1| \leq 1 . \tag{6}
\end{equation*}
$$

b) If $y_{1}(x)=x$ is a solution of $x^{2} y^{\prime \prime}+2 x y^{\prime}-2 y=0$, find the general solution.

Module II

15
a) By the method of variation of parameters, solve $y^{\prime \prime}+y=x \sin x$.
b) Solve $y^{\prime \prime}+5 y^{\prime}+6 y=e^{-2 x} \sin 2 x$.

OR

16 a) Solve $x^{2} y^{\prime \prime}+x y^{\prime}-9 y=\log x$.
b) Solve $y^{\prime \prime}-2 y^{\prime}+5 y=x^{2}$.

Module III

17 Find the Fourier cosine series representation of $f(x)=x, 0 \leq x \leq \pi$. Also find the Fourier series representation $\mathrm{f}(\mathrm{x})$ if $\mathrm{f}(\mathrm{x})$ is periodic function with period π.

OR

18 Find the Fourier series of the periodic function $f(x)$ of period 4, where
$f(x)=\left\{\begin{array}{lc}2, & -2<x \leq 0 \\ x, & 0<x<2\end{array}\right.$ and deduce that
(i) $1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\ldots=\frac{\pi^{2}}{8}$ and (ii) $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots .=\frac{\pi}{4}$

Module IV
19
a) Find the particular solution of $\frac{\partial^{2} z}{\partial x^{2}}+3 \frac{\partial^{2} z}{\partial x \partial y}+2 \frac{\partial^{2} z}{\partial y^{2}}=y^{2}$.
b) Find the general solution of $\left(y^{2}+z^{2}\right) p-x y q=-x z$.

OR

20
a) Solve $\left(D^{2}+3 D D^{\prime}+2 D^{\prime 2}\right) z=(2 x+y)^{7}$.
b)
Solve $4 \frac{\partial^{2} z}{\partial x^{2}}-4 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=16 \log (x+2 y)$.

Module V

21 a)
Using method of separation of variables, solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}-u, u(x, 0)=5 e^{-3 x}$.
b) A tightly stretched string of length l fastened at both ends is initially in a position given by $\mathrm{y}=\mathrm{kx}, 0<\mathrm{x}<1$. If it is released from rest from this position, find the displacement $\mathrm{y}(\mathrm{x}, \mathrm{t})$ at any time t and any distance x from the end $\mathrm{x}=0$.

OR
22 A string is stretched and fastened in two points 50 cm apart. Motion is started by
displacing the string into the form of the curve $y=x(50-x)$ and also by imparting a constant velocity V to every point of the string in the position at time $t=0$. Determine the displacement function $y(x, t)$.

Module VI

23 A rod of length 50 cm has its ends A and B kept at $20^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{Crespectively}$ until steady state temperature prevail. The temperature at each end is thensuddenly reduced to zero temperature and kept so. Find the resulting temperature function $\mathrm{u}(\mathrm{x}, \mathrm{t})$ taking $\mathrm{x}=0$ at A .

OR

24 A bar 10 cm long with insulated sides has its ends A and B maintainedat $50^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively until steady state conditions prevail. The temperature atA is suddenly raised to $90^{\circ} \mathrm{C}$ and at the same time that at B is lowered to $60^{\circ} \mathrm{C}$. Find thetemperature distribution in the bar at time t .

