\qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

 FIRST SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2017
Course Code: BE100
 Course Name: ENGINEERING MECHANICS

Max. Marks: 100

PART A
 Answer all questions, each carries 5 marks.

Duration: 3 Hours

1 State and explain Lami's theorem.
2 A force of 1000 N acts on a bracket as shown in Fig 1. Determine the moment of the force about Q .

Fig. 1
3 State and prove parallel axis theorem.
4 Using the principle of virtual work, determine the reactions of a beam $A B$ of span 8 m . The beam carries a point load of 4 kN at a distance of 3 m from A.
5 A wheel is rotating about its axis with a constant angular acceleration of $3 \mathrm{rad} / \mathrm{s}^{2}$. If the initial and final angular velocities are $5.25 \mathrm{rad} / \mathrm{s}$ and $10.5 \mathrm{rad} / \mathrm{s}$, determine the total angle turned through, during this interval.
6 a) A vertical lift of total mass 500 kg acquires an upward velocity of $2 \mathrm{~m} / \mathrm{s}$ over a distance of 3 m of motion with constant acceleration, starting from rest. Apply D'Alembert principle to calculate the tension in the cable supporting the lift.
b) If the lift, while stopping, moves with a constant deceleration and comes to rest in 2 s , calculate the force transmitted by a man of mass 75 kg on the floor of the lift during that interval.
7 Explain longitudinal, transverse and torsional vibrations with sketches.
8 A helical spring of negligible mass is found to extend 0.15 mm under a mass of 0.5 kg . Then a mass of 40 kg is attached at its lower end. The spring mass system is displaced vertically through 100 mm and released. Find the stiffness of the spring, period of oscillation and its natural frequency for the SHM produced.

PART B
Answer any 2 questions from each SET
SET 1
Each question carries 10 marks.
9 a) Two forces F and 2 F act on a particle. If the first force is increased by 12 kN and the second force is doubled, the direction of their resultant remains unchanged. Find the value of F.
b) Five forces $4, \sqrt{3}, 5, \sqrt{3}$ and 3 kN respectively act at one of the angular points of a regular hexagon towards other five angular points. Find the magnitude and
direction of the resultant forces.
10 A beam AB 10 m long is hinged at A and supported on rollers over a smooth surface inclined at 30° to the horizontal at B. The beam is loaded as shown in Fig 2. Determine the reactions at A and B.

Fig. 2
11 a) Three cylinders with given diameters are arranged as shown in fig 3. The cylinders A and B weigh 1000 N each and the weight of cylinder C is 2000 N . Determine the forces exerted at the contact points.

Fig. 3
b) A rigid bar is subjected to a system of parallel forces as shown in Fig 4. Reduce this system to a single force and moment system at A.

Fig. 4
SET II
Each question carries 10 marks
Locate the centroid of the shaded area shown in Fig. 5

Fig. 5
13 A rectangular hole is made in a triangular section as shown in Fig 6. Determine the M.I. of the section about x -x axis passing through the CG of the section and
parallel to BC. Also find the M.I, with respect to BC.

Fig. 6
14 A uniform ladder of weight 850 N and of length 6 m rests on a horizontal ground and leans against a smooth vertical wall. The angle made by the ladder with the horizontal is 65°. When a man of weight 750 N stands on the ladder at a distance 4 m from the top of the ladder, the ladder is at the point of sliding. Determine the co-efficient of friction between the ladder and the floor.

SET III

Each question carries 10 marks

15 a) A cylindrical roller, 50 cm in diameter, is in contact with two horizontal conveyor belts running at uniform speeds of $5 \mathrm{~m} / \mathrm{s}$ and $3 \mathrm{~m} / \mathrm{s}$ as shown in Fig. 7. Assuming that there is no slip at the points of contact, determine,
i) the position of the instantaneous centre of the roller,
ii) the linear velocity of the centre C , and
iii) the angular velocity of the roller.

Fig. 7
b) Determine the three parameters asked in the previous question, if the velocities of the belts are in opposite direction.
16 A mass of 60 kg is supported by two springs of stiffnesses $6 \mathrm{kN} / \mathrm{m}$ and $8 \mathrm{kN} / \mathrm{m}$. The springs are arranged in series. The mass is given an initial displacement of 40 mm and the released. Determine the period of vibration, the maximum velocity and maximum acceleration.
17 a) A reciprocating pump plunger is driven by a crank of radius 30 cm which is rotating at 120 rpm . Assuming SHM for the plunger, find out the velocity and acceleration of the plunger when it is at 15 cm from either end of the stroke.
b) Find out the maximum force required to push the plunger in the previous question, if the mass of the plunger is 10 kg .

[^0]
[^0]: * $\% * *$

