\qquad
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY
FIRST SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2017

Course Code: MA101

Course Name: CALCULUS
Max. Marks: 100

PART A

Answer all questions, each carries 5 marks.
Duration: 3 Hours

1 a) Test the convergence of the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt[3]{2 k-1}}$.
b) Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{x^{n}}{2 n+3}$.

2 a) Find the Slope of the surface $z=x e^{-y}+5 y$ in the y-direction at the point $(4,0)$.
b) Find the derivative of $z=\sqrt{1+x-2 x y^{4}}$ with respect to t along the path $x=\log t, y=2 t$.
3 a) Find the directional derivative of $f=x^{2} y-y z^{3}+z$ at $(-1,2,0)$ in the direction of $a=2 i+j+2 k$.
b) Find the unit tangent vector and unit normal vector to $r(t)=4 \cos t i+4 \sin t j+t k$ at $t=\frac{\pi}{2}$.
$4 \quad$ a)
Evaluate $\int_{0}^{\log 3} \int_{0}^{\log 2} e^{x+2 y} d y d x$.
b) Evaluate $\iint_{R} x y d A$, where R is the region bounded by the curves $y=x^{2}$ and $x=y^{2}$.
5 (a) Find the divergence and curl of the vector $F(x, y, z)=y z i+x y^{2} j+y z^{2} k$.
(b) Evaluate $\int_{C}\left(3 x^{2}+y^{2}\right) d x+2 x y d y$ along the circular arc C given by $x=\cos t, y=\sin t$ for $0 \leq t \leq \frac{\pi}{2}$.
6 (a) Use line integral to evaluate the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(b) Evaluate $\int_{C}\left(x^{2}-3 y\right) d x+3 x d y$, where C is the circle $x^{2}+y^{2}=4$.

PART B

Module 1

Answer any two questions, each carries 5 marks.

7
Test the convergence or divergence of the series $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}$.

A

Test the absolute convergence of $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{(2 k)!}{(3 k-2)!}$.
Find the Taylor series for $\frac{1}{1+x}$ at $x=2$.
Module 1I
Answer any two questions, each carries 5 marks.
Find the local linear approximation L to $f(x, y)=\log (x y)$ at $\mathrm{P}(1,2)$ and compare the error in approximating f by L at $\mathrm{Q}(1.01,2.01)$ with the distance between P and Q .
Let $w=4 x^{2}+4 y^{2}+z^{2}, x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta, z=\rho \cos \phi$. Find $\frac{\partial w}{\partial \rho}, \frac{\partial w}{\partial \phi}$ and $\frac{\partial w}{\partial \theta}$.
Locate all relative extrema and saddle points of $f(x, y)=4 x y-x^{4}-y^{4}$.

Module 1II

Answer any two questions, each carries 5 marks.
Find the equation of the tangent plane and parametric equation for the normal line to the surface $x^{2}+y^{2}+z^{2}=25$ at the point $(3,0,4)$.
A particle is moving along the curve $r(t)=\left(t^{3}-2 t\right) i+\left(t^{2}-4\right) j$ where t denotes the time. Find the scalar tangential and normal components of acceleration at $t=1$. Also find the vector tangential and normal components of acceleration at $t=1$.
The graphs of $r_{1}(t)=t^{2} i+t j+3 t^{3} k$ and $r_{2}(t)=(t-1) i+\frac{1}{4} t^{2} j+(5-t) k$ are intersect at the point $P(1,1,3)$.Find, to the nearest degree, the acute angle between the tangent lines to the graphs of $r_{1}(t) \& r_{2}(t)$ at the point $P(1,1,3)$.

Module 1V

Answer any two questions, each carries 5 marks.
Change the order of integration and evaluate $\int_{0}^{1} \int_{4 x}^{4} e^{-y^{2}} d y d x$.
Use triple integral to find the volume bounded by the cylinder $x^{2}+y^{2}=9$ and between the planes $z=1$ and $x+z=5$.
Find the area of the region enclosed between the parabola $y=\frac{x^{2}}{2}$ and the line $y=2 x$.

Module V

Answer any three questions, each carries 5 marks.

Determine whether $F(x, y)=(\cos y+y \cos x) i+(\sin x-x \sin y) j$ is a conservative vector field. If so find the potential function for it.
Show that the integral $\int_{(1,1)}^{(3,3)}\left(e^{x} \log y-\frac{e^{y}}{x}\right) d x+\left(\frac{e^{x}}{y}-e^{y} \log x\right) d y$, where x and y are positive is independent of the path and find its value.
Find the work done by the force field $F(x, y, z)=x y i+y z j+x z k$ on a particle that moves along the curve $C: r(t)=t i+t^{2} j+t^{3} k(0 \leq t \leq 1)$.

A

Let $\bar{r}=x i+y j+z k$ and $r=\|\bar{r}\|$, let f be a differentiable function of one variable, then show that $\nabla f(r)=\frac{f^{\prime}(r)}{r} \bar{r}$.
Find $\nabla \cdot(\nabla \times F)$ and $\nabla \times(\nabla \times F)$ where $F(x, y, z)=e^{x z} i+4 x e^{y} j-e^{y z} k$.

Module VI

Answer any three questions, each carries 5 marks.
Use Green's Theorem to evaluate $\int_{C} \log (1+y) d x-\frac{x y}{(1+y)} d y$, where C is the triangle with vertices $(0,0),(2,0)$ and $(0,4)$.
Evaluate the surface integral $\iint_{\sigma} x z d s$, where σ is the part of the plane $x+y+z=1$ that lies in the first octant.
Using Stoke's Theoremevaluate $\int_{C} F$. $d r$ where $F(x, y, z)=x z i+4 x^{2} y^{2} j+y x k, C$
is the rectangle $0 \leq x \leq 1,0 \leq y \leq 3$ in the plane $z=y$.
Using Divergence Theorem evaluate $\iint_{\sigma} \bar{F} . n d s$ where $F(x, y, z)=x^{3} i+y^{3} j+z^{3} k, \sigma$ is the surface of the cylindrical solid bounded by $x^{2}+y^{2}=4, z=0$ and $z=4$.
Determine whether the vector fields are free of sources and sinks. If it is not, locate them
(i) $(y+z) i-x z^{3} j+x^{2} \sin y k$
$\underset{* * * *}{\text { (ii) } x y i-2 x y j}+y^{2} k$

